Not enough data to create a plot.
Try a different view from the menu above.
Information Technology
Dynamic Behavior of Constained Back-Propagation Networks
It is generally admitted that generalization performance of back-propagation networks (Rumelhart,Hinton & Williams, 1986) will depend on the relative size ofthe training data and of the trained network. By analogy to curve-fitting and for theoretical considerations,the generalization performance of the network should decrease as the size of the network and the associated number of degrees of freedom increase (Rumelhart, 1987; Denker et al., 1987; Hanson & Pratt, 1989). This paper examines the dynamics of the standard back-propagation algorithm (BP) and of a constrained back-propagation variation (CBP), designed to adapt the size of the network to the training data base. The performance, learning dynamics and the representations resulting from the two algorithms are compared.
Generalization and Scaling in Reinforcement Learning
Ackley, David H., Littman, Michael L.
In associative reinforcement learning, an environment generates input vectors, a learning system generates possible output vectors, and a reinforcement functioncomputes feedback signals from the input-output pairs. The task is to discover and remember input-output pairs that generate rewards. Especially difficult cases occur when rewards are rare, since the expected time for any algorithm can grow exponentially with the size of the problem. Nonetheless, if a reinforcement function possesses regularities, and a learning algorithm exploits them, learning time can be reduced below that of non-generalizing algorithms. This paper describes a neural network algorithm called complementary reinforcement back-propagation(CRBP), and reports simulation results on problems designed to offer differing opportunities for generalization.
Computer Simulation of Oscillatory Behavior in Cerebral Cortical Networks
Wilson, Matthew A., Bower, James M.
It has been known for many years that specific regions of the working cerebralcortex display periodic variations in correlated cellular activity. While the olfactory system has been the focus of much of this work, similar behavior has recently been observed in primary visual cortex. We have developed models of both the olfactory and visual cortex which replicate the observed oscillatory properties ofthese networks. Using these models we have examined the dependence of oscillatory behavior on single cell properties and network architectures.We discuss the idea that the oscillatory events recorded from cerebral cortex may be intrinsic to the architecture of cerebral cortex as a whole, and that these rhythmic patterns may be important in coordinating neuronal activity during sensory processmg.
TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations
Zemel, Richard S., Mozer, Michael C., Hinton, Geoffrey E.
We describe a model that can recognize two-dimensional shapes in an unsegmented image, independent of their orientation, position, and scale. The model, called TRAFFIC, efficiently represents the structural relation between an object and each of its component features by encoding the fixed viewpoint-invariant transformation from the feature's reference frame to the object's in the weights of a connectionist network. Using a hierarchy of such transformations, with increasing complexity of features at each successive layer, the network can recognize multiple objects in parallel. An implementation ofTRAFFIC is described, along with experimental results demonstrating the network's ability to recognize constellations of stars in a viewpoint-invariant manner. 1 INTRODUCTION A key goal of machine vision is to recognize familiar objects in an unsegmented image, independent of their orientation, position, and scale. Massively parallel models have long been used for lower-level vision tasks, such as primitive feature extraction and stereo depth.
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate visionalgorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossingsusing two resistive grids with different spaceconstants. Todemonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.
Combining Visual and Acoustic Speech Signals with a Neural Network Improves Intelligibility
Sejnowski, Terrence J., Yuhas, Ben P., Jr., Moise H. Goldstein, Jenkins, Robert E.
Previous attempts at using these visual speech signals to improve automatic speech recognition systems havecombined the acoustic and visual speech information at a symbolic level using heuristic rules. In this paper, we demonstrate an alternative approach to fusing the visual and acoustic speech information by training feedforward neural networks to map the visual signal onto the corresponding short-term spectral amplitude envelope (STSAE) of the acoustic signal. This information can be directly combined with the degraded acoustic STSAE. Significant improvementsare demonstrated in vowel recognition from noise-degraded acoustic signals. These results are compared to the performance of humans, as well as other pattern matching and estimation algorithms. 1 INTRODUCTION Current automatic speech recognition systems rely almost exclusively on the acoustic speechsignal, and as a consequence, these systems often perform poorly in noisy Combining Visual and Acoustic Speech Signals 233 environments.
A Cost Function for Internal Representations
Krogh, Anders, Thorbergsson, C. I., Hertz, John A.
We introduce a cost function for learning in feed-forward neural networks which is an explicit function of the internal representation inaddition to the weights. The learning problem can then be formulated as two simple perceptrons and a search for internal representations. Back-propagation is recovered as a limit. The frequency of successful solutions is better for this algorithm than for back-propagation when weights and hidden units are updated on the same timescale i.e. once every learning step. 1 INTRODUCTION In their review of back-propagation in layered networks, Rumelhart et al. (1986) describe the learning process in terms of finding good "internal representations" of the input patterns on the hidden units. However, the search for these representations isan indirect one, since the variables which are adjusted in its course are the connection weights, not the activations of the hidden units themselves when specific input patterns are fed into the input layer. Rather, the internal representations are represented implicitly in the connection weight values. More recently, Grossman et al. (1988 and 1989)1 suggested a way in which the search for internal representations could be made much more explicit.
Speaker Independent Speech Recognition with Neural Networks and Speech Knowledge
Bengio, Yoshua, Mori, Renato de, Cardin, Rรฉgis
Yoshua Bengio Renato De Mori Dept Computer Science Dept Computer Science McGill University McGill University Montreal, Canada H3A2A7 RegisCardin Dept Computer Science McGill University ABSTRACT We attempt to combine neural networks with knowledge from speech science to build a speaker independent speech recognition system.This knowledge is utilized in designing the preprocessing, input coding, output coding, output supervision and architectural constraints. To handle the temporal aspect of speech we combine delays, copies of activations of hidden and output units at the input level, and Back-Propagation for Sequences (BPS), a learning algorithm for networks with local self-loops. This strategy is demonstrated in several experiments, inparticular a nasal discrimination task for which the application of a speech theory hypothesis dramatically improved generalization. 1 INTRODUCTION The strategy put forward in this research effort is to combine the flexibility and learning abilities of neural networks with as much knowledge from speech science as possible in order to build a speaker independent automatic speech recognition system. This knowledge is utilized in each of the steps in the construction ofan automated speech recognition system: preprocessing, input coding, output coding, output supervision, architectural design. Fast Fourier Transform (FFT), or compressing the frame sequence in such a way as to conserve an approximately constant rate of change.
Learning to Control an Unstable System with Forward Modeling
Jordan, Michael I., Jacobs, Robert A.
The forward modeling approach is a methodology for learning control whendata is available in distal coordinate systems. We extend previous work by considering how this methodology can be applied to the optimization of quantities that are distal not only in space but also in time. In many learning control problems, the output variables of the controller are not the natural coordinates in which to specify tasks and evaluate performance. Tasks are generally more naturally specified in "distal" coordinate systems (e.g., endpoint coordinates for manipulator motion) than in the "proximal" coordinate system of the controller (e.g., joint angles or torques). Furthermore, the relationship between proximal coordinates and distal coordinates is often not known a priori and, if known, not easily inverted.
A Method for the Associative Storage of Analog Vectors
Atiya, Amir F., Abu-Mostafa, Yaser S.
A method for storing analog vectors in Hopfield's continuous feedback modelis proposed. By analog vectors we mean vectors whose components are real-valued. The vectors to be stored are set as equilibria of the network. The network model consists of one layer of visible neurons and one layer of hidden neurons. We propose a learning algorithm, which results in adjusting the positions of the equilibria, as well as guaranteeing their stability.