Goto

Collaborating Authors

 Sensing and Signal Processing



SeeClear: Semantic Distillation Enhances Pixel Condensation for Video Super-Resolution Qi Tang 1,2

Neural Information Processing Systems

Diffusion-based Video Super-Resolution (VSR) is renowned for generating perceptually realistic videos, yet it grapples with maintaining detail consistency across frames due to stochastic fluctuations. The traditional approach of pixel-level alignment is ineffective for diffusion-processed frames because of iterative disruptions. To overcome this, we introduce SeeClear-a novel VSR framework leveraging conditional video generation, orchestrated by instance-centric and channel-wise semantic controls. This framework integrates a Semantic Distiller and a Pixel Condenser, which synergize to extract and upscale semantic details from low-resolution frames. The Instance-Centric Alignment Module (InCAM) utilizes video-clip-wise tokens to dynamically relate pixels within and across frames, enhancing coherency.



Supplementary Material of A Unified Conditional Framework for Diffusion-based Image Restoration

Neural Information Processing Systems

For all tasks, we adopt a UNet architecture similar to the one described in DvSR [4]. The input feature map is expanded to 64 channels. There are five stages in both the encoder and decoder, and each stage contains two diffusion model blocks. Between each encoder stage, the input resolution is downsampled by a convolution layer with stride 2 and the channels are expanded by a factor of 2. On the other hand, in each decoder stage, the feature map resolution and the channels are reversed by the Nearest upsampling and a convolution layer separately. During training, we use a linear noise schedule with a total of T = 2000 steps.


A Unified Conditional Framework for Diffusion-based Image Restoration 1

Neural Information Processing Systems

Diffusion Probabilistic Models (DPMs) have recently shown remarkable performance in image generation tasks, which are capable of generating highly realistic images. When adopting DPMs for image restoration tasks, the crucial aspect lies in how to integrate the conditional information to guide the DPMs to generate accurate and natural output, which has been largely overlooked in existing works. In this paper, we present a unified conditional framework based on diffusion models for image restoration. We leverage a lightweight UNet to predict initial guidance and the diffusion model to learn the residual of the guidance. By carefully designing the basic module and integration module for the diffusion model block, we integrate the guidance and other auxiliary conditional information into every block of the diffusion model to achieve spatially-adaptive generation conditioning. To handle high-resolution images, we propose a simple yet effective inter-step patch-splitting strategy to produce arbitrary-resolution images without grid artifacts. We evaluate our conditional framework on three challenging tasks: extreme low-light denoising, deblurring, and JPEG restoration, demonstrating its significant improvements in perceptual quality and the generalization to restoration tasks.



IMDL-BenCo: A Comprehensive Benchmark and Codebase for Image Manipulation Detection & Localization

Neural Information Processing Systems

A comprehensive benchmark is yet to be established in the Image Manipulation Detection & Localization (IMDL) field. The absence of such a benchmark leads to insufficient and misleading model evaluations, severely undermining the development of this field. However, the scarcity of open-sourced baseline models and inconsistent training and evaluation protocols make conducting rigorous experiments and faithful comparisons among IMDL models challenging. To address these challenges, we introduce IMDL-BenCo, the first comprehensive IMDL benchmark and modular codebase. IMDL-BenCo: i) decomposes the IMDL framework into standardized, reusable components and revises the model construction pipeline, improving coding efficiency and customization flexibility; ii) fully implements or incorporates training code for state-of-the-art models to establish a comprehensive IMDL benchmark; and iii) conducts deep analysis based on the established benchmark and codebase, offering new insights into IMDL model architecture, dataset characteristics, and evaluation standards. Specifically, IMDL-BenCo includes common processing algorithms, 8 state-of-the-art IMDL models (1 of which are reproduced from scratch), 2 sets of standard training and evaluation protocols, 15 GPU-accelerated evaluation metrics, and 3 kinds of robustness evaluation. This benchmark and codebase represent a significant leap forward in calibrating the current progress in the IMDL field and inspiring future breakthroughs.


Dual-Curriculum Contrastive Multi-Instance Learning for Cancer Prognosis Analysis with Whole Slide Images

Neural Information Processing Systems

The multi-instance learning (MIL) has advanced cancer prognosis analysis with whole slide images (WSIs). However, current MIL methods for WSI analysis still confront unique challenges. Previous methods typically generate instance representations via a pre-trained model or a model trained by the instances with bag-level annotations, which, however, may not generalize well to the downstream task due to the introduction of excessive label noises and the lack of fine-grained information across multi-magnification WSIs. Additionally, existing methods generally aggregate instance representations as bag ones for prognosis prediction and have no consideration of intra-bag redundancy and inter-bag discrimination. To address these issues, we propose a dual-curriculum contrastive MIL method for cancer prognosis analysis with WSIs. The proposed method consists of two curriculums, i.e., saliency-guided weakly-supervised instance encoding with cross-scale tiles and contrastive-enhanced soft-bag prognosis inference. Extensive experiments on three public datasets demonstrate that our method outperforms state-of-the-art methods in this field.



Adaptive Randomized Smoothing: Certified Adversarial Robustness for Multi-Step Defences

Neural Information Processing Systems

We propose Adaptive Randomized Smoothing (ARS) to certify the predictions of our test-time adaptive models against adversarial examples. ARS extends the analysis of randomized smoothing using f-Differential Privacy to certify the adaptive composition of multiple steps. For the first time, our theory covers the sound adaptive composition of general and high-dimensional functions of noisy inputs.