Goto

Collaborating Authors

 Sensing and Signal Processing


On Learning Multi-Modal Forgery Representation for Diffusion Generated Video Detection

Neural Information Processing Systems

Large numbers of synthesized videos from diffusion models pose threats to information security and authenticity, leading to an increasing demand for generated content detection. However, existing video-level detection algorithms primarily focus on detecting facial forgeries and often fail to identify diffusion-generated content with a diverse range of semantics. To advance the field of video forensics, we propose an innovative algorithm named Multi-Modal Detection(MM-Det) for detecting diffusion-generated videos. MM-Det utilizes the profound perceptual and comprehensive abilities of Large Multi-modal Models (LMMs) by generating a Multi-Modal Forgery Representation (MMFR) from LMM's multi-modal space, enhancing its ability to detect unseen forgery content.


Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer

Neural Information Processing Systems

Generating high-quality 3D assets from text and images has long been challenging, primarily due to the absence of scalable 3D representations capable of capturing intricate geometry distributions. In this work, we introduce Direct3D, a native 3D generative model scalable to in-the-wild input images, without requiring a multiview diffusion model or SDS optimization. Our approach comprises two primary components: a Direct 3D Variational Auto-Encoder (D3D-VAE) and a Direct 3D Diffusion Transformer (D3D-DiT). D3D-VAE efficiently encodes high-resolution 3D shapes into a compact and continuous latent triplane space. Notably, our method directly supervises the decoded geometry using a semi-continuous surface sampling strategy, diverging from previous methods that rely on rendered images as supervision signals. D3D-DiT models the distribution of encoded 3D latents and is specifically designed to fuse positional information from the three feature maps of the triplane latent, enabling a native 3D generative model scalable to large-scale 3D datasets. Additionally, we introduce an innovative image-to-3D generation pipeline incorporating semantic-level and pixel-level image conditions, allowing the model to produce 3D shapes consistent with the provided conditional image input. Extensive experiments demonstrate the superiority of our large-scale pre-trained Direct3D over previous image-to-3D approaches, achieving significantly better generation quality and generalization ability, thus establishing a new state-of-the-art for 3D content creation.




DRAUC: An Instance-wise Distributionally Robust AUC Optimization Framework Zhiyong Yang 4

Neural Information Processing Systems

The Area Under the ROC Curve (AUC) is a widely employed metric in long-tailed classification scenarios. Nevertheless, most existing methods primarily assume that training and testing examples are drawn i.i.d.


DRAUC: An Instance-wise Distributionally Robust AUC Optimization Framework Zhiyong Yang 4

Neural Information Processing Systems

The Area Under the ROC Curve (AUC) is a widely employed metric in long-tailed classification scenarios. Nevertheless, most existing methods primarily assume that training and testing examples are drawn i.i.d.


Discrete Modeling via Boundary Conditional Diffusion Processes

Neural Information Processing Systems

We present an novel framework for efficiently and effectively extending the powerful continuous diffusion processes to discrete modeling. Previous approaches have suffered from the discrepancy between discrete data and continuous modeling. Our study reveals that the absence of guidance from discrete boundaries in learning probability contours is one of the main reasons. To address this issue, we propose a two-step forward process that first estimates the boundary as a prior distribution and then rescales the forward trajectory to construct a boundary conditional diffusion model. The reverse process is proportionally adjusted to guarantee that the learned contours yield more precise discrete data. Experimental results indicate that our approach achieves strong performance in both language modeling and discrete image generation tasks. In language modeling, our approach surpasses previous state-of-the-art continuous diffusion language models in three translation tasks and a summarization task, while also demonstrating competitive performance compared to auto-regressive transformers.




On Separate Normalization in Self-supervised Transformers Yinkai Wang Department of Computer Science Department of Computer Science Tufts University

Neural Information Processing Systems

Self-supervised training methods for transformers have demonstrated remarkable performance across various domains. Previous transformer-based models, such as masked autoencoders (MAE), typically utilize a single normalization layer for both the class token [CLS] and the tokens. We propose in this paper a new yet simple normalization method that separately normalizes embedding vectors respectively corresponding to normal tokens and the [CLS] token, in order to better capture their distinct characteristics and enhance downstream task performance. Our empirical study shows that the [CLS] embeddings learned with our separate normalization layer better encode the global contextual information and are distributed more uniformly in its anisotropic space. When the conventional normalization layer is replaced with a separate normalization layer, we observe an average 2.7% performance improvement in learning tasks from the image, natural language, and graph domains.