Sensing and Signal Processing
Image Recognition in Context: Application to Microscopic Urinalysis
Song, Xubo B., Sill, Joseph, Abu-Mostafa, Yaser S., Kasdan, Harvey
We propose a new and efficient technique for incorporating contextual information into object classification. Most of the current techniques face the problem of exponential computation cost. In this paper, we propose a new general framework that incorporates partial context at a linear cost. This technique is applied to microscopic urinalysis image recognition, resulting in a significant improvement of recognition rate over the context free approach. This gain would have been impossible using conventional context incorporation techniques.
Probabilistic Image Sensor Fusion
Sharma, Ravi K., Leen, Todd K., Pavel, Misha
We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying, true scene. A Bayesian framework then provides for maximum likelihood or maximum a posteriori estimates of the true scene from the sensor images. Maximum likelihood estimates of the parameters of the image formation model involve (local) second order image statistics, and thus are related to local principal component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. 1 Introduction Advances in sensing devices have fueled the deployment of multiple sensors in several computational vision systems [1, for example]. Using multiple sensors can increase reliability with respect to single sensor systems.
Learning Lie Groups for Invariant Visual Perception
Rao, Rajesh P. N., Ruderman, Daniel L.
One of the most important problems in visual perception is that of visual invariance: how are objects perceived to be the same despite undergoing transformations such as translations, rotations or scaling? In this paper, we describe a Bayesian method for learning invariances based on Lie group theory. We show that previous approaches based on first-order Taylor series expansions of inputs can be regarded as special cases of the Lie group approach, the latter being capable of handling in principle arbitrarily large transfonnations. Using a matrixexponential based generative model of images, we derive an unsupervised algorithm for learning Lie group operators from input data containing infinitesimal transfonnations.
Learning Lie Groups for Invariant Visual Perception
Rao, Rajesh P. N., Ruderman, Daniel L.
One of the most important problems in visual perception is that of visual invariance: how are objects perceived to be the same despite undergoing transformations such as translations, rotations or scaling? In this paper, we describe a Bayesian method for learning invariances based on Lie group theory. We show that previous approaches based on first-order Taylor series expansions of inputs can be regarded as special cases of the Lie group approach, the latter being capable of handling in principle arbitrarily large transfonnations. Using a matrixexponential based generative model of images, we derive an unsupervised algorithm for learning Lie group operators from input data containing infinitesimal transfonnations.
Probabilistic Image Sensor Fusion
Sharma, Ravi K., Leen, Todd K., Pavel, Misha
We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying, true scene. A Bayesian framework then provides for maximum likelihood or maximum a posteriori estimates of the true scene from the sensor images. Maximum likelihood estimates of the parameters of the image formation model involve (local) second order image statistics, and thus are related to local principal component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. 1 Introduction Advances in sensing devices have fueled the deployment of multiple sensors in several computational vision systems [1, for example]. Using multiple sensors can increase reliability with respect to single sensor systems.