Goto

Collaborating Authors

 Sensing and Signal Processing


Blind Image Denoising via Dependent Dirichlet Process Tree

arXiv.org Machine Learning

Most existing image denoising approaches assumed the noise to be homogeneous white Gaussian distributed with known intensity. However, in real noisy images, the noise models are usually unknown beforehand and can be much more complex. This paper addresses this problem and proposes a novel blind image denoising algorithm to recover the clean image from noisy one with the unknown noise model. To model the empirical noise of an image, our method introduces the mixture of Gaussian distribution, which is flexible enough to approximate different continuous distributions. The problem of blind image denoising is reformulated as a learning problem. The procedure is to first build a two-layer structural model for noisy patches and consider the clean ones as latent variable. To control the complexity of the noisy patch model, this work proposes a novel Bayesian nonparametric prior called "Dependent Dirichlet Process Tree" to build the model. Then, this study derives a variational inference algorithm to estimate model parameters and recover clean patches. We apply our method on synthesis and real noisy images with different noise models. Comparing with previous approaches, ours achieves better performance. The experimental results indicate the efficiency of the proposed algorithm to cope with practical image denoising tasks.


Planar Ultrametrics for Image Segmentation

Neural Information Processing Systems

We study the problem of hierarchical clustering on planar graphs. We formulate this in terms of finding the closest ultrametric to a specified set of distances and solve it using an LP relaxation that leverages minimum cost perfect matching as a subroutine to efficiently explore the space of planar partitions. We apply our algorithm to the problem of hierarchical image segmentation.


Exploring Models and Data for Image Question Answering

Neural Information Processing Systems

This work aims to address the problem of image-based question-answering (QA) with new models and datasets. In our work, we propose to use neural networks and visual semantic embeddings, without intermediate stages such as object detection and image segmentation, to predict answers to simple questions about images. Our model performs 1.8 times better than the only published results on an existing image QA dataset. We also present a question generation algorithm that converts image descriptions, which are widely available, into QA form. We used this algorithm to produce an order-of-magnitude larger dataset, with more evenly distributed answers. A suite of baseline results on this new dataset are also presented.


Expressing an Image Stream with a Sequence of Natural Sentences

Neural Information Processing Systems

We propose an approach for generating a sequence of natural sentences for an image stream. Since general users usually take a series of pictures on their special moments, much online visual information exists in the form of image streams, for which it would better take into consideration of the whole set to generate natural language descriptions. While almost all previous studies have dealt with the relation between a single image and a single natural sentence, our work extends both input and output dimension to a sequence of images and a sequence of sentences. To this end, we design a novel architecture called coherent recurrent convolutional network (CRCN), which consists of convolutional networks, bidirectional recurrent networks, and entity-based local coherence model. Our approach directly learns from vast user-generated resource of blog posts as text-image parallel training data. We demonstrate that our approach outperforms other state-of-the-art candidate methods, using both quantitative measures (e.g. BLEU and top-K recall) and user studies via Amazon Mechanical Turk.


Learning to Segment Object Candidates

Neural Information Processing Systems

Recent object detection systems rely on two critical steps: (1) a set of object proposals is predicted as efficiently as possible, and (2) this set of candidate proposals is then passed to an object classifier. Such approaches have been shown they can be fast, while achieving the state of the art in detection performance. In this paper, we propose a new way to generate object proposals, introducing an approach based on a discriminative convolutional network. Our model is trained jointly with two objectives: given an image patch, the first part of the system outputs a class-agnostic segmentation mask, while the second part of the system outputs the likelihood of the patch being centered on a full object. At test time, the model is efficiently applied on the whole test image and generates a set of segmentation masks, each of them being assigned with a corresponding object likelihood score. We show that our model yields significant improvements over state-of-the-art object proposal algorithms. In particular, compared to previous approaches, our model obtains substantially higher object recall using fewer proposals. We also show that our model is able to generalize to unseen categories it has not seen during training. Unlike all previous approaches for generating object masks, we do not rely on edges, superpixels, or any other form of low-level segmentation.


Deep Generative Image Models using a ๏ฟผLaplacian Pyramid of Adversarial Networks

Neural Information Processing Systems

In this paper we introduce a generative model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks (convnets) within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach. Samples drawn from our model are of significantly higher quality than existing models. In a quantitive assessment by human evaluators our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for GAN samples. We also show samples from more diverse datasets such as STL10 and LSUN.


Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis

Neural Information Processing Systems

An important problem for both graphics and vision is to synthesize novel views of a 3D object from a single image. This is in particular challenging due to the partial observability inherent in projecting a 3D object onto the image space, and the ill-posedness of inferring object shape and pose. However, we can train a neural network to address the problem if we restrict our attention to specific object classes (in our case faces and chairs) for which we can gather ample training data. In this paper, we propose a novel recurrent convolutional encoder-decoder network that is trained end-to-end on the task of rendering rotated objects starting from a single image. The recurrent structure allows our model to capture long- term dependencies along a sequence of transformations, and we demonstrate the quality of its predictions for human faces on the Multi-PIE dataset and for a dataset of 3D chair models, and also show its ability of disentangling latent data factors without using object class labels.


Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Prediction

Neural Information Processing Systems

Efforts to automate the reconstruction of neural circuits from 3D electron microscopic (EM) brain images are critical for the field of connectomics. An important computation for reconstruction is the detection of neuronal boundaries. Images acquired by serial section EM, a leading 3D EM technique, are highly anisotropic, with inferior quality along the third dimension. For such images, the 2D max-pooling convolutional network has set the standard for performance at boundary detection. Here we achieve a substantial gain in accuracy through three innovations. Following the trend towards deeper networks for object recognition, we use a much deeper network than previously employed for boundary detection. Second, we incorporate 3D as well as 2D filters, to enable computations that use 3D context. Finally, we adopt a recursively trained architecture in which a first network generates a preliminary boundary map that is provided as input along with the original image to a second network that generates a final boundary map. Backpropagation training is accelerated by ZNN, a new implementation of 3D convolutional networks that uses multicore CPU parallelism for speed. Our hybrid 2D-3D architecture could be more generally applicable to other types of anisotropic 3D images, including video, and our recursive framework for any image labeling problem.


Exploring Models and Data for Image Question Answering

arXiv.org Artificial Intelligence

This work aims to address the problem of image-based question-answering (QA) with new models and datasets. In our work, we propose to use neural networks and visual semantic embeddings, without intermediate stages such as object detection and image segmentation, to predict answers to simple questions about images. Our model performs 1.8 times better than the only published results on an existing image QA dataset. We also present a question generation algorithm that converts image descriptions, which are widely available, into QA form. We used this algorithm to produce an order-of-magnitude larger dataset, with more evenly distributed answers. A suite of baseline results on this new dataset are also presented.


Deep Kalman Filters

arXiv.org Machine Learning

Kalman Filters are one of the most influential models of time-varying phenomena. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption in a variety of disciplines. Motivated by recent variational methods for learning deep generative models, we introduce a unified algorithm to efficiently learn a broad spectrum of Kalman filters. Of particular interest is the use of temporal generative models for counterfactual inference. We investigate the efficacy of such models for counterfactual inference, and to that end we introduce the "Healing MNIST" dataset where long-term structure, noise and actions are applied to sequences of digits. We show the efficacy of our method for modeling this dataset. We further show how our model can be used for counterfactual inference for patients, based on electronic health record data of 8,000 patients over 4.5 years.