Image Processing
Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty
In image segmentation, there is often more than one plausible solution for a given input. In medical imaging, for example, experts will often disagree about the exact location of object boundaries. Estimating this inherent uncertainty and predicting multiple plausible hypotheses is of great interest in many applications, yet this ability is lacking in most current deep learning methods. In this paper, we introduce stochastic segmentation networks (SSNs), an efficient probabilistic method for modelling aleatoric uncertainty with any image segmentation network architecture. In contrast to approaches that produce pixel-wise estimates, SSNs model joint distributions over entire label maps and thus can generate multiple spatially coherent hypotheses for a single image. By using a low-rank multivariate normal distribution over the logit space to model the probability of the label map given the image, we obtain a spatially consistent probability distribution that can be efficiently computed by a neural network without any changes to the underlying architecture. We tested our method on the segmentation of real-world medical data, including lung nodules in 2D CT and brain tumours in 3D multimodal MRI scans. SSNs outperform state-of-the-art for modelling correlated uncertainty in ambiguous images while being much simpler, more flexible, and more efficient.
Cross-modal Representation Flattening for Multi-modal Domain Generalization Yunfeng Fan 1
Multi-modal domain generalization (MMDG) requires that models trained on multimodal source domains can generalize to unseen target distributions with the same modality set. Sharpness-aware minimization (SAM) is an effective technique for traditional uni-modal domain generalization (DG), however, with limited improvement in MMDG. In this paper, we identify that modality competition and discrepant uni-modal flatness are two main factors that restrict multi-modal generalization. To overcome these challenges, we propose to construct consistent flat loss regions and enhance knowledge exploitation for each modality via cross-modal knowledge transfer. Firstly, we turn to the optimization on representation-space loss landscapes instead of traditional parameter space, which allows us to build connections between modalities directly. Then, we introduce a novel method to flatten the high-loss region between minima from different modalities by interpolating mixed multi-modal representations. We implement this method by distilling and optimizing generalizable interpolated representations and assigning distinct weights for each modality considering their divergent generalization capabilities. Extensive experiments are performed on two benchmark datasets, EPIC-Kitchens and Human-Animal-Cartoon (HAC), with various modality combinations, demonstrating the effectiveness of our method under multi-source and single-source settings.
MaskFactory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation YD Chen 1 Shengtao Lou
Dichotomous Image Segmentation (DIS) tasks require highly precise annotations, and traditional dataset creation methods are labor intensive, costly, and require extensive domain expertise. Although using synthetic data for DIS is a promising solution to these challenges, current generative models and techniques struggle with the issues of scene deviations, noise-induced errors, and limited training sample variability. To address these issues, we introduce a novel approach, MaskFactory, which provides a scalable solution for generating diverse and precise datasets, markedly reducing preparation time and costs. We first introduce a general mask editing method that combines rigid and non-rigid editing techniques to generate high-quality synthetic masks. Specially, rigid editing leverages geometric priors from diffusion models to achieve precise viewpoint transformations under zeroshot conditions, while non-rigid editing employs adversarial training and selfattention mechanisms for complex, topologically consistent modifications. Then, we generate pairs of high-resolution image and accurate segmentation mask using a multi-conditional control generation method. Finally, our experiments on the widely-used DIS5K dataset benchmark demonstrate superior performance in quality and efficiency compared to existing methods.
Fast Vision Transformers with HiLo Attention
Vision Transformers (ViTs) have triggered the most recent and significant breakthroughs in computer vision. Their efficient designs are mostly guided by the indirect metric of computational complexity, i.e., FLOPs, which however has a clear gap with the direct metric such as throughput. Thus, we propose to use the direct speed evaluation on the target platform as the design principle for efficient ViTs. Particularly, we introduce LITv2, a simple and effective ViT which performs favourably against the existing state-of-the-art methods across a spectrum of different model sizes with faster speed. At the core of LITv2 is a novel self-attention mechanism, which we dub HiLo. HiLo is inspired by the insight that high frequencies in an image capture local fine details and low frequencies focus on global structures, whereas a multi-head self-attention layer neglects the characteristic of different frequencies.
ALIFE: Adaptive Logit Regularizer and Feature Replay for Incremental Semantic Segmentation
We address the problem of incremental semantic segmentation (ISS) recognizing novel object/stuff categories continually without forgetting previous ones that have been learned. The catastrophic forgetting problem is particularly severe in ISS, since pixel-level ground-truth labels are available only for the novel categories at training time. To address the problem, regularization-based methods exploit probability calibration techniques to learn semantic information from unlabeled pixels. While such techniques are effective, there is still a lack of theoretical understanding of them. Replay-based methods propose to memorize a small set of images for previous categories.
Unleashing Multispectral Video's Potential in Semantic Segmentation: A Semi-supervised Viewpoint and New UAV-View Benchmark
Thanks to the rapid progress in RGB & thermal imaging, also known as multispectral imaging, the task of multispectral video semantic segmentation, or MVSS in short, has recently drawn significant attentions. Noticeably, it offers new opportunities in improving segmentation performance under unfavorable visual conditions such as poor light or overexposure. Unfortunately, there are currently very few datasets available, including for example MVSeg dataset that focuses purely toward eye-level view; and it features the sparse annotation nature due to the intensive demands of labeling process. To address these key challenges of the MVSS task, this paper presents two major contributions: the introduction of MVUAV, a new MVSS benchmark dataset, and the development of a dedicated semi-supervised MVSS baseline - SemiMV. Our MVUAV dataset is captured via Unmanned Aerial Vehicles (UAV), which offers a unique oblique bird's-eye view complementary to the existing MVSS datasets; it also encompasses a broad range of day/night lighting conditions and over 30 semantic categories. In the meantime, to better leverage the sparse annotations and extra unlabeled RGB-Thermal videos, a semi-supervised learning baseline, SemiMV, is proposed to enforce consistency regularization through a dedicated Cross-collaborative Consistency Learning (C3L) module and a denoised temporal aggregation strategy. Comprehensive empirical evaluations on both MVSeg and MVUAV benchmark datasets have showcased the efficacy of our SemiMV baseline.
Improved Techniques for Training Score-Based Generative Models
Score-based generative models can produce high quality image samples comparable to GANs, without requiring adversarial optimization. However, existing training procedures are limited to images of low resolution (typically below 32 32), and can be unstable under some settings. We provide a new theoretical analysis of learning and sampling from score-based models in high dimensional spaces, explaining existing failure modes and motivating new solutions that generalize across datasets. To enhance stability, we also propose to maintain an exponential moving average of model weights. With these improvements, we can scale scorebased generative models to various image datasets, with diverse resolutions ranging from 64 64 to 256 256. Our score-based models can generate high-fidelity samples that rival best-in-class GANs on various image datasets, including CelebA, FFHQ, and several LSUN categories.
AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation
Neural network architecture design requires making many crucial decisions. The common desiderata is that similar decisions, with little modifications, can be reused in a variety of tasks and applications. To satisfy that, architectures must provide promising latency and performance trade-offs, support a variety of tasks, scale efficiently with respect to the amounts of data and compute, leverage available data from other tasks, and efficiently support various hardware. To this end, we introduce AsCAN--a hybrid architecture, combining both convolutional and transformer blocks. We revisit the key design principles of hybrid architectures and propose a simple and effective asymmetric architecture, where the distribution of convolutional and transformer blocks is asymmetric, containing more convolutional blocks in the earlier stages, followed by more transformer blocks in later stages. AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation, and features a superior trade-off between performance and latency.
LoTLIP: Improving Language-Image Pre-training for Long Text Understanding
Understanding long text is of great demands in practice but beyond the reach of most language-image pre-training (LIP) models. In this work, we empirically confirm that the key reason causing such an issue is that the training images are usually paired with short captions, leaving certain tokens easily overshadowed by salient tokens. Towards this problem, our initial attempt is to relabel the data with long captions, however, directly learning with which may lead to performance degradation in understanding short text (e.g., in the image classification task). Then, after incorporating corner tokens to aggregate diverse textual information, we manage to help the model catch up to its original level of short text understanding yet greatly enhance its capability of long text understanding. We further look into whether the model can continuously benefit from longer captions and notice a clear trade-off between the performance and the efficiency. Finally, we validate the effectiveness of our approach using a self-constructed large-scale dataset, which consists of 100M long caption oriented text-image pairs. Our method achieves superior performance in long-text-image retrieval tasks. The project page is available here.