Goto

Collaborating Authors

 Image Processing



FactorizePhys: Matrix Factorization for Multidimensional Attention in Remote Physiological Sensing, Sos S. Agaian 2

Neural Information Processing Systems

Remote photoplethysmography (rPPG) enables non-invasive extraction of blood volume pulse signals through imaging, transforming spatial-temporal data into time series signals. Advances in end-to-end rPPG approaches have focused on this transformation where attention mechanisms are crucial for feature extraction. However, existing methods compute attention disjointly across spatial, temporal, and channel dimensions. Here, we propose the Factorized Self-Attention Module (FSAM), which jointly computes multidimensional attention from voxel embeddings using nonnegative matrix factorization. To demonstrate FSAM's effectiveness, we developed FactorizePhys, an end-to-end 3D-CNN architecture for estimating blood volume pulse signals from raw video frames.




Label-Only Model Inversion Attacks via Knowledge Transfer

Neural Information Processing Systems

In a model inversion (MI) attack, an adversary abuses access to a machine learning (ML) model to infer and reconstruct private training data. Remarkable progress has been made in the white-box and black-box setups, where the adversary has access to the complete model or the model's soft output respectively. However, there is very limited study in the most challenging but practically important setup: Labelonly MI attacks, where the adversary only has access to the model's predicted label (hard label) without confidence scores nor any other model information. In this work, we propose LOKT, a novel approach for label-only MI attacks. Our idea is based on transfer of knowledge from the opaque target model to surrogate models.



Bitstream-Corrupted Video Recovery: A Novel Benchmark Dataset and Method Yi Wang

Neural Information Processing Systems

The past decade has witnessed great strides in video recovery by specialist technologies, like video inpainting, completion, and error concealment. However, they typically simulate the missing content by manual-designed error masks, thus failing to fill in the realistic video loss in video communication (e.g., telepresence, live streaming, and internet video) and multimedia forensics. To address this, we introduce the bitstream-corrupted video (BSCV) benchmark, the first benchmark dataset with more than 28,000 video clips, which can be used for bitstream-corrupted video recovery in the real world. The BSCV is a collection of 1) a proposed threeparameter corruption model for video bitstream, 2) a large-scale dataset containing rich error patterns, multiple corruption levels, and flexible dataset branches, and 3) a new video recovery framework that serves as a benchmark. We evaluate stateof-the-art video inpainting methods on the BSCV dataset, demonstrating existing approaches' limitations and our framework's advantages in solving the bitstreamcorrupted video recovery problem.


OpenMask3D: Open-Vocabulary 3D Instance Segmentation

Neural Information Processing Systems

We introduce the task of open-vocabulary 3D instance segmentation. Current approaches for 3D instance segmentation can typically only recognize object categories from a pre-defined closed set of classes that are annotated in the training datasets. This results in important limitations for real-world applications where one might need to perform tasks guided by novel, open-vocabulary queries related to a wide variety of objects. Recently, open-vocabulary 3D scene understanding methods have emerged to address this problem by learning queryable features for each point in the scene. While such a representation can be directly employed to perform semantic segmentation, existing methods cannot separate multiple object instances. In this work, we address this limitation, and propose OpenMask3D, which is a zero-shot approach for open-vocabulary 3D instance segmentation. Guided by predicted class-agnostic 3D instance masks, our model aggregates per-mask features via multi-view fusion of CLIP-based image embeddings. Experiments and ablation studies on ScanNet200 and Replica show that OpenMask3D outperforms other open-vocabulary methods, especially on the long-tail distribution. Qualitative experiments further showcase OpenMask3D's ability to segment object properties based on free-form queries describing geometry, affordances, and materials.