Goto

Collaborating Authors

 Image Processing


Unsupervised Color Decomposition Of Histologically Stained Tissue Samples

Neural Information Processing Systems

Accurate spectral decomposition is essential for the analysis and diagnosis of histologically stained tissue sections. In this paper we present the first automated system for performing this decomposition. Wecompare the performance of our system with ground truth data and report favorable results.


A Model for Learning the Semantics of Pictures

Neural Information Processing Systems

We propose an approach to learning the semantics of images which allows usto automatically annotate an image with keywords and to retrieve images based on text queries. We do this using a formalism that models the generation of annotated images. We assume that every image is divided intoregions, each described by a continuous-valued feature vector. Given a training set of images with annotations, we compute a joint probabilistic modelof image features and words which allow us to predict the probability of generating a word given the image regions. This may be used to automatically annotate and retrieve images given a word as a query. Experiments show that our model significantly outperforms the best of the previously reported results on the tasks of automatic image annotation and retrieval.


A Mixed-Signal VLSI for Real-Time Generation of Edge-Based Image Vectors

Neural Information Processing Systems

A mixed-signal image filtering VLSI has been developed aiming at real-time generation of edge-based image vectors for robust image recognition. A four-stage asynchronous median detection architecture basedon analog digital mixed-signal circuits has been introduced todetermine the threshold value of edge detection, the key processing parameter in vector generation. As a result, a fully seamless pipeline processing from threshold detection to edge feature mapgeneration has been established. A prototype chip was designed in a 0.35-ยตm double-polysilicon three-metal-layer CMOS technology and the concept was verified by the fabricated chip. The chip generates a 64-dimension feature vector from a 64x64-pixel gray scale image every 80ยตsec.




Geometric Analysis of Constrained Curves

Neural Information Processing Systems

We present a geometric approach to statistical shape analysis of closed curves in images. The basic idea is to specify a space of closed curves satisfying given constraints, and exploit the differential geometry of this space to solve optimization and inference problems. We demonstrate this approach by: (i) defining and computing statistics of observed shapes, (ii) defining and learning a parametric probability model on shape space, and (iii) designing a binary hypothesis test on this space.


Unrestricted Recognition of 3D Objects for Robotics Using Multilevel Triplet Invariants

AI Magazine

A method for unrestricted recognition of three-dimensional objects was developed. By unrestricted, we imply that the recognition will be done independently of object position, scale, orientation, and pose against a structured background. It does not assume any preceding segmentation or allow a reasonable degree of occlusion. The method uses a hierarchy of triplet feature invariants, which are at each level defined by a learning procedure. In the feedback learning procedure, percepts are mapped on system states corresponding to manipulation parameters of the object. The method uses a learning architecture with channel information representation. This article discusses how objects can be represented. We propose a structure to deal with object and contextual properties in a transparent manner.


Recovering Intrinsic Images from a Single Image

Neural Information Processing Systems

We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color information and a classifier trained to recognize gray-scale patterns, each image derivative is classified as being caused by shading or a change in the surface's reflectance. Generalized Belief Propagation is then used to propagate information from areas where the correct classification is clear to areas where it is ambiguous. We also show results on real images.


Dynamic Structure Super-Resolution

Neural Information Processing Systems

The problem of super-resolution involves generating feasible higher resolution images, which are pleasing to the eye and realistic, from a given low resolution image. This might be attempted by using simple filters for smoothing out the high resolution blocks or through applications where substantial prior information is used to imply the textures and shapes which will occur in the images. In this paper we describe an approach which lies between the two extremes. It is a generic unsupervised method which is usable in all domains, but goes beyond simple smoothing methods in what it achieves. We use a dynamic treelike architecture to model the high resolution data. Approximate conditioning on the low resolution image is achieved through a mean field approach.


Learning to Detect Natural Image Boundaries Using Brightness and Texture

Neural Information Processing Systems

The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, a classifier is trained using human labeled images as ground truth. We present precision-recall curves showing that the resulting detector outperforms existing approaches.