Goto

Collaborating Authors

 Image Processing


Coarse-to-Fine Image Search Using Neural Networks

Neural Information Processing Systems

The efficiency of image search can be greatly improved by using a coarse-to-fine search strategy with a multi-resolution image representation. However, if the resolution is so low that the objects have few distinguishing features, search becomes difficult. We show that the performance of search at such low resolutions can be improved by using context information, i.e., objects visible at low-resolution which are not the objects of interest but are associated with them. The networks can be given explicit context information as inputs, or they can learn to detect the context objects, in which case the user does not have to be aware of their existence. We also use Integrated Feature Pyramids, which represent high-frequency information at low resolutions. The use of multiresolution search techniques allows us to combine information about the appearance of the objects on many scales in an efficient way. A natural fOlm of exemplar selection also arises from these techniques. We illustrate these ideas by training hierarchical systems of neural networks to find clusters of buildings in aerial photographs of farmland.


Learning Saccadic Eye Movements Using Multiscale Spatial Filters

Neural Information Processing Systems

Such sensors realize the simultaneous need for wide field-of-view and good visual acuity. One popular class of space-variant sensors is formed by log-polar sensors which have a small area near the optical axis of greatly increased resolution (the fovea) coupled with a peripheral region that witnesses a gradual logarithmic falloff in resolution as one moves radially outward. These sensors are inspired by similar structures found in the primate retina where one finds both a peripheral region of gradually decreasing acuity and a circularly symmetric area centmlis characterized by a greater density of receptors and a disproportionate representation in the optic nerve [3]. The peripheral region, though of low visual acuity, is more sensitive to light intensity and movement. The existence of a region optimized for discrimination and recognition surrounded by a region geared towards detection thus allows the image of an object of interest detected in the outer region to be placed on the more analytic center for closer scrutiny. Such a strategy however necessitates the existence of (a) methods to determine which location in the periphery to foveate next, and (b) fast gaze-shifting mechanisms to achieve this 894 Rajesh P. N. Rao, Dana H. Ballard


PCA-Pyramids for Image Compression

Neural Information Processing Systems

This paper presents a new method for image compression by neural networks. First, we show that we can use neural networks in a pyramidal framework, yielding the so-called PCA pyramids. Then we present an image compression method based on the PCA pyramid, which is similar to the Laplace pyramid and wavelet transform. Some experimental results with real images are reported. Finally, we present a method to combine the quantization step with the learning of the PCA pyramid. 1 Introduction In the past few years, a lot of work has been done on using neural networks for image compression, d. e.g.


The Role of Intelligent Systems in the National Information Infrastructure

AI Magazine

This report stems from a workshop that was organized by the Association for the Advancement of Artificial Intelligence (AAAI) and cosponsored by the Information Technology and Organizations Program of the National Science Foundation. The purpose of the workshop was twofold: first, to increase awareness among the artificial intelligence (AI) community of opportunities presented by the National Information Infrastructure (NII) activities, in particular, the Information Infrastructure and Tech-nology Applications (IITA) component of the High Performance Computing and Communications Program; and second, to identify key contributions of research in AI to the NII and IITA.


AAAI 1994 Spring Symposium Series Reports

AI Magazine

The Association for the Advancement of Artificial Intelligence (AAAI) held its 1994 Spring Symposium Series on 19-23 March at Stanford University, Stanford, California. This article contains summaries of 10 of the 11 symposia that were conducted: Applications of Computer Vision in Medical Image Processing; AI in Medicine: Interpreting Clinical Data; Believable Agents; Computational Organization Design; Decision-Theoretic Planning; Detecting and Resolving Errors in Manufacturing Systems; Goal-Driven Learning; Intelligent Multimedia, Multimodal Systems; Software Agents; and Toward Physical Interaction and Manipulation. Papers of most of the symposia are available as technical reports from AAAI.


AAAI 1994 Spring Symposium Series Reports

AI Magazine

The Association for the Advancement of Artificial Intelligence (AAAI) held its 1994 Spring Symposium Series on 19-23 March at Stanford University, Stanford, California. This article contains summaries of 10 of the 11 symposia that were conducted: Applications of Computer Vision in Medical Image Processing; AI in Medicine: Interpreting Clinical Data; Believable Agents; Computational Organization Design; Decision-Theoretic Planning; Detecting and Resolving Errors in Manufacturing Systems; Goal-Driven Learning; Intelligent Multimedia, Multimodal Systems; Software Agents; and Toward Physical Interaction and Manipulation. Papers of most of the symposia are available as technical reports from AAAI.


Filter Selection Model for Generating Visual Motion Signals

Neural Information Processing Systems

We present a model of how MT cells aggregate responses from VI to form such a velocity representation. Two different sets of units, with local receptive fields, receive inputs from motion energy filters. One set of units forms estimates of local motion, while the second set computes the utility of these estimates. Outputs from this second set of units "gate" the outputs from the first set through a gain control mechanism. This active process for selecting only a subset of local motion responses to integrate into more global responses distinguishes our model from previous models of velocity estimation.


Remote Sensing Image Analysis via a Texture Classification Neural Network

Neural Information Processing Systems

In this work we apply a texture classification network to remote sensing image analysis.The goal is to extract the characteristics of the area depicted in the input image, thus achieving a segmented map of the region. We have recently proposed a combined neural network and rule-based framework for texture recognition. The framework uses unsupervised and supervised learning, and provides probability estimates for the output classes. We describe the texture classification network and extend it to demonstrate its application to the Landsat and Aerial image analysis domain. 1 INTRODUCTION In this work we apply a texture classification network to remote sensing image analysis. The goal is to segment the input image into homogeneous textured regions and identify each region as one of a prelearned library of textures, e.g.


Filter Selection Model for Generating Visual Motion Signals

Neural Information Processing Systems

We present a model of how MT cells aggregate responses from VI to form such a velocity representation. Two different sets of units, with local receptive fields, receive inputs from motion energy filters. One set of units forms estimates of local motion, while the second set computes the utility of these estimates. Outputs from this second set of units "gate" the outputs from the first set through a gain control mechanism. This active process for selecting only a subset of local motion responses to integrate into more global responses distinguishes our model from previous models of velocity estimation.


Remote Sensing Image Analysis via a Texture Classification Neural Network

Neural Information Processing Systems

In this work we apply a texture classification network to remote sensing image analysis. The goal is to extract the characteristics of the area depicted in the input image, thus achieving a segmented map of the region. We have recently proposed a combined neural network and rule-based framework for texture recognition. The framework uses unsupervised and supervised learning, and provides probability estimates for the output classes. We describe the texture classification network and extend it to demonstrate its application to the Landsat and Aerial image analysis domain. 1 INTRODUCTION In this work we apply a texture classification network to remote sensing image analysis. The goal is to segment the input image into homogeneous textured regions and identify each region as one of a prelearned library of textures, e.g.