Goto

Collaborating Authors

 Image Processing



I'm sorry to say, but your understanding of image processing fundamentals is absolutely wrong

arXiv.org Artificial Intelligence

The ongoing discussion whether modern vision systems have to be viewed as visually-enabled cognitive systems or cognitively-enabled vision systems is groundless, because perceptual and cognitive faculties of vision are separate components of human (and consequently, artificial) information processing system modeling.


An Image-Based Sensor System for Autonomous Rendez-Vous with Uncooperative Satellites

arXiv.org Artificial Intelligence

In this paper are described the image processing algorithms developed by SENER, Ingenieria y Sistemas to cope with the problem of image-based, autonomous rendez-vous (RV) with an orbiting satellite. The methods developed have a direct application in the OLEV (Orbital Life Extension Extension Vehicle) mission. OLEV is a commercial mission under development by a consortium formed by Swedish Space Corporation, Kayser-Threde and SENER, aimed to extend the operational life of geostationary telecommunication satellites by supplying them control, navigation and guidance services. OLEV is planned to use a set of cameras to determine the angular position and distance to the client satellite during the complete phases of rendez-vous and docking, thus enabling the operation with satellites not equipped with any specific navigational aid to provide support during the approach. The ability to operate with un-equipped client satellites significantly expands the range of applicability of the system under development, compared to other competing video technologies already tested in previous spatial missions, such as the ones described here below.


Unveiling the mystery of visual information processing in human brain

arXiv.org Artificial Intelligence

It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.


A Theory of Retinal Population Coding

Neural Information Processing Systems

Efficient coding models predict that the optimal code for natural images is a population of oriented Gabor receptive fields. These results match response properties of neurons in primary visual cortex, but not those in the retina. Does the retina use an optimal code, and if so, what is it optimized for? Previous theories of retinal coding have assumed that the goal is to encode the maximal amount of information about the sensory signal. However, the image sampled by retinal photoreceptors is degraded both by the optics of the eye and by the photoreceptor noise. Therefore, de-blurring and de-noising of the retinal signal should be important aspects of retinal coding.


Kernels on Structured Objects Through Nested Histograms

Neural Information Processing Systems

We propose a family of kernels for structured objects which is based on the bag-ofcomponents paradigm. However, rather than decomposing each complex object into the single histogram of its components, we use for each object a family of nested histograms, where each histogram in this hierarchy describes the object seen from an increasingly granular perspective. We use this hierarchy of histograms to define elementary kernels which can detect coarse and fine similarities between the objects. We compute through an efficient averaging trick a mixture of such specific kernels, to propose a final kernel value which weights efficiently local and global matches. We propose experimental results on an image retrieval experiment which show that this mixture is an effective template procedure to be used with kernels on histograms.


Dynamic Foreground/Background Extraction from Images and Videos using Random Patches

Neural Information Processing Systems

In this paper, we propose a novel exemplar-based approach to extract dynamic foreground regions from a changing background within a collection of images or a video sequence. By using image segmentation as a pre-processing step, we convert this traditional pixel-wise labeling problem into a lower-dimensional supervised, binary labeling procedure on image segments. Our approach consists of three steps. First, a set of random image patches are spatially and adaptively sampled within each segment. Second, these sets of extracted samples are formed into two "bags of patches" to model the foreground/background appearance, respectively.


Dynamic Foreground/Background Extraction from Images and Videos using Random Patches

Neural Information Processing Systems

In this paper, we propose a novel exemplar-based approach to extract dynamic foreground regions from a changing background within a collection of images or a video sequence. By using image segmentation as a pre-processing step, we convert this traditional pixel-wise labeling problem into a lower-dimensional supervised, binarylabeling procedure on image segments. Our approach consists of three steps. First, a set of random image patches are spatially and adaptively sampled withineach segment. Second, these sets of extracted samples are formed into two "bags of patches" to model the foreground/background appearance, respectively.


Kernels on Structured Objects Through Nested Histograms

Neural Information Processing Systems

We propose a family of kernels for structured objects which is based on the bag-ofcomponents paradigm.However, rather than decomposing each complex object into the single histogram of its components, we use for each object a family of nested histograms, where each histogram in this hierarchy describes the object seen from an increasingly granular perspective. We use this hierarchy of histograms todefine elementary kernels which can detect coarse and fine similarities between the objects. We compute through an efficient averaging trick a mixture of such specific kernels, to propose a final kernel value which weights efficiently local and global matches. We propose experimental results on an image retrieval experiment which show that this mixture is an effective template procedure to be used with kernels on histograms.