Goto

Collaborating Authors

 Image Processing


Perturbation of the Eigenvectors of the Graph Laplacian: Application to Image Denoising

arXiv.org Machine Learning

The original contributions of this paper are twofold: a new understanding of the influence of noise on the eigenvectors of the graph Laplacian of a set of image patches, and an algorithm to estimate a denoised set of patches from a noisy image. The algorithm relies on the following two observations: (1) the low-index eigenvectors of the diffusion, or graph Laplacian, operators are very robust to random perturbations of the weights and random changes in the connections of the patch-graph; and (2) patches extracted from smooth regions of the image are organized along smooth low-dimensional structures in the patch-set, and therefore can be reconstructed with few eigenvectors. Experiments demonstrate that our denoising algorithm outperforms the denoising gold-standards.


Cultural Analytics of Large Datasets from Flickr

AAAI Conferences

Deluge became a metaphor to describe the amount of information to which we are subjected, and very often we feel we are drowning while our access to information is rising. Devising mechanisms for exploring massive image sets according to perceptual attributes is still a challenge, even more when dealing with user-generated social media content. Such images tend to be heterogenous, and using metadata-only can be misleading. This paper describes a set of tools designed to analyze large sets of user-created art related images using image features describing color, texture, composition and orientation. The proposed pipeline permits to discriminate Flickr groups in terms of feature vectors and clustering parameters. The algorithms are general enough to be applied to other domains in which the main question is about the variability of the images.


Noisy Search with Comparative Feedback

arXiv.org Artificial Intelligence

We present theoretical results in terms of lower and upper bounds on the query complexity of noisy search with comparative feedback. In this search model, the noise in the feedback depends on the distance between query points and the search target. Consequently, the error probability in the feedback is not fixed but varies for the queries posed by the search algorithm. Our results show that a target out of n items can be found in O(log n) queries. We also show the surprising result that for k possible answers per query, the speedup is not log k (as for k-ary search) but only log log k in some cases.


On the Lagrangian Biduality of Sparsity Minimization Problems

arXiv.org Machine Learning

Recent results in Compressive Sensing have shown that, under certain conditions, the solution to an underdetermined system of linear equations with sparsity-based regularization can be accurately recovered by solving convex relaxations of the original problem. In this work, we present a novel primal-dual analysis on a class of sparsity minimization problems. We show that the Lagrangian bidual (i.e., the Lagrangian dual of the Lagrangian dual) of the sparsity minimization problems can be used to derive interesting convex relaxations: the bidual of the $\ell_0$-minimization problem is the $\ell_1$-minimization problem; and the bidual of the $\ell_{0,1}$-minimization problem for enforcing group sparsity on structured data is the $\ell_{1,\infty}$-minimization problem. The analysis provides a means to compute per-instance non-trivial lower bounds on the (group) sparsity of the desired solutions. In a real-world application, the bidual relaxation improves the performance of a sparsity-based classification framework applied to robust face recognition.


Portmanteau Vocabularies for Multi-Cue Image Representation

Neural Information Processing Systems

We describe a novel technique for feature combination in the bag-of-words model of image classification. Our approach builds discriminative compound words from primitive cues learned independently from training images. Our main observation is that modeling joint-cue distributions independently is more statistically robust for typical classification problems than attempting to empirically estimate the dependent, joint-cue distribution directly. We use Information theoretic vocabulary compression to find discriminative combinations of cues and the resulting vocabulary of portmanteau words is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. State-of-the-art results on both the Oxford Flower-102 and Caltech-UCSD Bird-200 datasets demonstrate the effectiveness of our technique compared to other, significantly more complex approaches to multi-cue image representation


Let us first agree on what the term "semantics" means: An unorthodox approach to an age-old debate

arXiv.org Artificial Intelligence

Traditionally, semantics has been seen as a feature of human language. The advent of the information era has led to its widespread redefinition as an information feature. Contrary to this praxis, I define semantics as a special kind of information. Revitalizing the ideas of Bar-Hillel and Carnap I have recreated and re-established the notion of semantics as the notion of Semantic Information. I have proposed a new definition of information (as a description, a linguistic text, a piece of a story or a tale) and a clear segregation between two different types of information - physical and semantic information. I hope, I have clearly explained the (usually obscured and mysterious) interrelations between data and physical information as well as the relation between physical information and semantic information. Consequently, usually indefinable notions of "information", "knowledge", "memory", "learning" and "semantics" have also received their suitable illumination and explanation.


Heavy-tailed Distances for Gradient Based Image Descriptors

Neural Information Processing Systems

Many applications in computer vision measure the similarity between images or image patches based on some statistics such as oriented gradients. These are often modeled implicitly or explicitly with a Gaussian noise assumption, leading to the use of the Euclidean distance when comparing image descriptors. In this paper, we show that the statistics of gradient based image descriptors often follow a heavy-tailed distribution, which undermines any principled motivation for the use of Euclidean distances. We advocate for the use of a distance measure based on the likelihood ratio test with appropriate probabilistic models that fit the empirical data distribution. We instantiate this similarity measure with the Gamma-compound-Laplace distribution, and show significant improvement over existing distance measures in the application of SIFT feature matching, at relatively low computational cost.


Matrix Completion for Multi-label Image Classification

Neural Information Processing Systems

Recently, image categorization has been an active research topic due to the urgent need to retrieve and browse digital images via semantic keywords. This paper formulates image categorization as a multi-label classification problem using recent advances in matrix completion. Under this setting, classification of testing data is posed as a problem of completing unknown label entries on a data matrix that concatenates training and testing features with training labels. We propose two convex algorithms for matrix completion based on a Rank Minimization criterion specifically tailored to visual data, and prove its convergence properties.


Maximum Margin Multi-Instance Learning

Neural Information Processing Systems

Multi-instance learning (MIL) considers input as bags of instances, in which labels areassigned to the bags. MIL is useful in many real-world applications. For example, in image categorization semantic meanings (labels) of an image mostly arise from its regions (instances) instead of the entire image (bag). Existing MIL methods typically build their models using the Bag-to-Bag (B2B) distance, which are often computationally expensive and may not truly reflect the semantic similarities. Totackle this, in this paper we approach MIL problems from a new perspective using the Class-to-Bag (C2B) distance, which directly assesses the relationships between the classes and the bags.


Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Neural Information Processing Systems

We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we present competitive results by integrating an additional edge model. We believe that our approach is a solid starting point for future development in this domain.