Goto

Collaborating Authors

 Image Processing


Mixtures of conditional Gaussian scale mixtures applied to multiscale image representations

arXiv.org Machine Learning

We present a probabilistic model for natural images which is based on Gaussian scale mixtures and a simple multiscale representation. In contrast to the dominant approach to modeling whole images focusing on Markov random fields, we formulate our model in terms of a directed graphical model. We show that it is able to generate images with interesting higher-order correlations when trained on natural images or samples from an occlusion based model. More importantly, the directed model enables us to perform a principled evaluation. While it is easy to generate visually appealing images, we demonstrate that our model also yields the best performance reported to date when evaluated with respect to the cross-entropy rate, a measure tightly linked to the average log-likelihood.


Multiscale Geometric Methods for Data Sets II: Geometric Multi-Resolution Analysis

arXiv.org Machine Learning

Data sets are often modeled as point clouds in $R^D$, for $D$ large. It is often assumed that the data has some interesting low-dimensional structure, for example that of a $d$-dimensional manifold $M$, with $d$ much smaller than $D$. When $M$ is simply a linear subspace, one may exploit this assumption for encoding efficiently the data by projecting onto a dictionary of $d$ vectors in $R^D$ (for example found by SVD), at a cost $(n+D)d$ for $n$ data points. When $M$ is nonlinear, there are no "explicit" constructions of dictionaries that achieve a similar efficiency: typically one uses either random dictionaries, or dictionaries obtained by black-box optimization. In this paper we construct data-dependent multi-scale dictionaries that aim at efficient encoding and manipulating of the data. Their construction is fast, and so are the algorithms that map data points to dictionary coefficients and vice versa. In addition, data points are guaranteed to have a sparse representation in terms of the dictionary. We think of dictionaries as the analogue of wavelets, but for approximating point clouds rather than functions.


Color Texture Classification Approach Based on Combination of Primitive Pattern Units and Statistical Features

arXiv.org Artificial Intelligence

Texture classification became one of the problems which has been paid much attention on by image processing scientists since late 80s. Consequently, since now many different methods have been proposed to solve this problem. In most of these methods the researchers attempted to describe and discriminate textures based on linear and non-linear patterns. The linear and non-linear patterns on any window are based on formation of Grain Components in a particular order. Grain component is a primitive unit of morphology that most meaningful information often appears in the form of occurrence of that. The approach which is proposed in this paper could analyze the texture based on its grain components and then by making grain components histogram and extracting statistical features from that would classify the textures. Finally, to increase the accuracy of classification, proposed approach is expanded to color images to utilize the ability of approach in analyzing each RGB channels, individually. Although, this approach is a general one and it could be used in different applications, the method has been tested on the stone texture and the results can prove the quality of approach.


Cross Media Entity Extraction and Linkage for Chemical Documents

AAAI Conferences

Text and images are two major sources of information in scientific literature. Information from these two media typically reinforce and complement each other, thus simplifying the process for human to extract and comprehend information. However, machines cannot create the links or have the semantic understanding between images and text. We propose to integrate text analysis and image processing techniques to bridge the gap between the two media, and discover knowledge from the combined information sources, which would be otherwise lost by traditional single-media based mining systems. The focus is on the chemical entity extraction task because images are well known to add value to the textual content in chemical literature. Annotation of US chemical patent documents demonstrates the effectiveness of our proposal.


Proximal Methods for Hierarchical Sparse Coding

arXiv.org Machine Learning

Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced tree-structured sparse regularization norm, which has proven useful in several applications. This norm leads to regularized problems that are difficult to optimize, and we propose in this paper efficient algorithms for solving them. More precisely, we show that the proximal operator associated with this norm is computable exactly via a dual approach that can be viewed as the composition of elementary proximal operators. Our procedure has a complexity linear, or close to linear, in the number of atoms, and allows the use of accelerated gradient techniques to solve the tree-structured sparse approximation problem at the same computational cost as traditional ones using the L1-norm. Our method is efficient and scales gracefully to millions of variables, which we illustrate in two types of applications: first, we consider fixed hierarchical dictionaries of wavelets to denoise natural images. Then, we apply our optimization tools in the context of dictionary learning, where learned dictionary elements naturally organize in a prespecified arborescent structure, leading to a better performance in reconstruction of natural image patches. When applied to text documents, our method learns hierarchies of topics, thus providing a competitive alternative to probabilistic topic models.


A random walk on image patches

arXiv.org Machine Learning

In this paper we address the problem of understanding the success of algorithms that organize patches according to graph-based metrics. Algorithms that analyze patches extracted from images or time series have led to state-of-the art techniques for classification, denoising, and the study of nonlinear dynamics. The main contribution of this work is to provide a theoretical explanation for the above experimental observations. Our approach relies on a detailed analysis of the commute time metric on prototypical graph models that epitomize the geometry observed in general patch graphs. We prove that a parametrization of the graph based on commute times shrinks the mutual distances between patches that correspond to rapid local changes in the signal, while the distances between patches that correspond to slow local changes expand. In effect, our results explain why the parametrization of the set of patches based on the eigenfunctions of the Laplacian can concentrate patches that correspond to rapid local changes, which would otherwise be shattered in the space of patches. While our results are based on a large sample analysis, numerical experimentations on synthetic and real data indicate that the results hold for datasets that are very small in practice.


Structured Knowledge Representation for Image Retrieval

arXiv.org Artificial Intelligence

We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval.


Extraction of handwritten areas from colored image of bank checks by an hybrid method

arXiv.org Artificial Intelligence

One of the first step in the realization of an automatic system of check recognition is the extraction of the handwritten area. We propose in this paper an hybrid method to extract these areas. This method is based on digit recognition by Fourier descriptors and different steps of colored image processing . It requires the bank recognition of its code which is located in the check marking band as well as the handwritten color recognition by the method of difference of histograms. The areas extraction is then carried out by the use of some mathematical morphology tools.


A Directional Feature with Energy based Offline Signature Verification Network

arXiv.org Artificial Intelligence

Signature used as a biometric is implemented in various systems as well as every signature signed by each person is distinct at the same time. So, it is very important to have a computerized signature verification system. In offline signature verification system dynamic features are not available obviously, but one can use a signature as an image and apply image processing techniques to make an effective offline signature verification system. Author proposes a intelligent network used directional feature and energy density both as inputs to the same network and classifies the signature. Neural network is used as a classifier for this system. The results are compared with both the very basic energy density method and a simple directional feature method of offline signature verification system and this proposed new network is found very effective as compared to the above two methods, specially for less number of training samples, which can be implemented practically.


Kernel Descriptors for Visual Recognition

Neural Information Processing Systems

The design of low-level image features is critical for computer vision algorithms. Orientation histograms, such as those in SIFT [16] and HOG [3], are the most successful and popular features for visual object and scene recognition. We highlight thekernel view of orientation histograms, and show that they are equivalent to a certain type of match kernels over image patches. This novel view allows us to design a family of kernel descriptors which provide a unified and principled frameworkto turn pixel attributes (gradient, color, local binary pattern, etc.) into compact patch-level features. In particular, we introduce three types of match kernels to measure similarities between image patches, and construct compact low-dimensional kernel descriptors from these match kernels using kernel principal componentanalysis (KPCA) [23]. Kernel descriptors are easy to design and can turn any type of pixel attribute into patch-level features. They outperform carefully tuned and sophisticated features including SIFT and deep belief networks.