Goto

Collaborating Authors

 Data Mining


A Framework for Cryptographic Verifiability of End-to-End AI Pipelines

arXiv.org Artificial Intelligence

The increasing integration of Artificial Intelligence across multiple industry sectors necessitates robust mechanisms for ensuring transparency, trust, and auditability of its development and deployment. This topic is particularly important in light of recent calls in various jurisdictions to introduce regulation and legislation on AI safety. In this paper, we propose a framework for complete verifiable AI pipelines, identifying key components and analyzing existing cryptographic approaches that contribute to verifiability across different stages of the AI lifecycle, from data sourcing to training, inference, and unlearning. This framework could be used to combat misinformation by providing cryptographic proofs alongside AI-generated assets to allow downstream verification of their provenance and correctness. Our findings underscore the importance of ongoing research to develop cryptographic tools that are not only efficient for isolated AI processes, but that are efficiently `linkable' across different processes within the AI pipeline, to support the development of end-to-end verifiable AI technologies.


Bi-Level Multi-View fuzzy Clustering with Exponential Distance

arXiv.org Artificial Intelligence

In this study, we propose extension of fuzzy c-means (FCM) clustering in multi-view environments. First, we introduce an exponential multi-view FCM (E-MVFCM). E-MVFCM is a centralized MVC with consideration to heat-kernel coefficients (H-KC) and weight factors. Secondly, we propose an exponential bi-level multi-view fuzzy c-means clustering (EB-MVFCM). Different to E-MVFCM, EB-MVFCM does automatic computation of feature and weight factors simultaneously. Like E-MVFCM, EB-MVFCM present explicit forms of the H-KC to simplify the generation of the heat-kernel $\mathcal{K}(t)$ in powers of the proper time $t$ during the clustering process. All the features used in this study, including tools and functions of proposed algorithms will be made available at https://www.github.com/KristinaP09/EB-MVFCM.


TS: A Unified Multi-Task Time Series Model

Neural Information Processing Systems

Although pre-trained transformers and reprogrammed text-based LLMs have shown strong performance on time series tasks, the best-performing architectures vary widely across tasks, with most models narrowly focused on specific areas, such as time series forecasting. Unifying predictive and generative time series tasks within a single model remains challenging.


On the Powerfulness of Textual Outlier Exposure for Visual OoD Detection

Neural Information Processing Systems

Successful detection of Out-of-Distribution (OoD) data is becoming increasingly important to ensure safe deployment of neural networks. One of the main challenges in OoD detection is that neural networks output overconfident predictions on OoD data, make it difficult to determine OoD-ness of data solely based on their predictions. Outlier exposure addresses this issue by introducing an additional loss that encourages low-confidence predictions on OoD data during training. While outlier exposure has shown promising potential in improving OoD detection performance, all previous studies on outlier exposure have been limited to utilizing visual outliers.


case, please provide a description

Neural Information Processing Systems

This document is based on Datasheets for Datasets by and edges)? Please see the most updated version The instances of this graph-based dataset comprise here. Link prediction on this dataset is a multi-instance prediction task [3]. For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that How many instances are there in total (of each type, needed to be filled?



Diverse Community Data for Benchmarking Data Privacy Algorithms

Neural Information Processing Systems

The Collaborative Research Cycle (CRC) is a National Institute of Standards and Technology (NIST) benchmarking program intended to strengthen understanding of tabular data deidentification technologies. Deidentification algorithms are vulnerable to the same bias and privacy issues that impact other data analytics and machine learning applications, and it can even amplify those issues by contaminating downstream applications. This paper summarizes four CRC contributions: theoretical work on the relationship between diverse populations and challenges for equitable deidentification; public benchmark data focused on diverse populations and challenging features; a comprehensive open source suite of evaluation metrology for deidentified datasets; and an archive of more than 450 deidentified data samples from a broad range of techniques. The initial set of evaluation results demonstrate the value of the CRC tools for investigations in this field.


Learning to Understand Open-World Video Anomalies 1,2

Neural Information Processing Systems

Video Anomaly Detection (VAD) systems can autonomously monitor and identify disturbances, reducing the need for manual labor and associated costs. However, current VAD systems are often limited by their superficial semantic understanding of scenes and minimal user interaction. Additionally, the prevalent data scarcity in existing datasets restricts their applicability in open-world scenarios.



Query-Efficient Correlation Clustering with Noisy Oracle

Neural Information Processing Systems

We study a general clustering setting in which we have n elements to be clustered, and we aim to perform as few queries as possible to an oracle that returns a noisy sample of the weighted similarity between two elements. Our setting encompasses many application domains in which the similarity function is costly to compute and inherently noisy. We introduce two novel formulations of online learning problems rooted in the paradigm of Pure Exploration in Combinatorial Multi-Armed Bandits (PE-CMAB): fixed confidence and fixed budget settings. For both settings, we design algorithms that combine a sampling strategy with a classic approximation algorithm for correlation clustering and study their theoretical guarantees. Our results are the first examples of polynomial-time algorithms that work for the case of PE-CMAB in which the underlying offline optimization problem is NP-hard.