Goto

Collaborating Authors

 Data Mining


Empirical Methods in Information Extraction

AI Magazine

This article surveys the use of empirical, machine-learning methods for a particular natural language-understanding task-information extraction. The author presents a generic architecture for information-extraction systems and then surveys the learning algorithms that have been developed to address the problems of accuracy, portability, and knowledge acquisition for each component of the architecture.


Calendar of Events

AI Magazine

Autonomous agents are computer systems that are capable of independent action in dynamic, unpredictable environments. Agents are also one of the most important and exciting areas of research and development in computer science today. Agents are currently being applied in domains as diverse as computer games and interactive cinema, information retrieval and filtering, user interface design, and industrial process control. Agents '98 will build on the enormous success of the First International Conference on Autonomous Agents (Agents '97), held in Marina del Rey in February 1997. The conference welcomes submissions of original, high quality papers and videos with summaries concerning autonomous agents in a variety of embodiments and playing a variety of roles in their environments.


AAAI News

AI Magazine

Special Information about the conference The 1998 Program Committee invites thanks are extended to Barbara Grosz, is available by writing to ncai@aaai.


Making an Impact: Artificial Intelligence at the Jet Propulsion Laboratory

AI Magazine

The National Aeronautics and Space Administration (NASA) is being challenged to perform more frequent and intensive space-exploration missions at greatly reduced cost. Nowhere is this challenge more acute than among robotic planetary exploration missions that the Jet Propulsion Laboratory (JPL) conducts for NASA. This article describes recent and ongoing work on spacecraft autonomy and ground systems that builds on a legacy of existing success at JPL applying AI techniques to challenging computational problems in planning and scheduling, real-time monitoring and control, scientific data analysis, and design automation.


AAAI News

AI Magazine

Ballots will be due Applications of Artificial Intelligence have an accepted technical paper, back at the AAAI office no later than (IAAI-97) will be held in and then to students who are actively June 13. Conference on Knowledge Discovery are encouraged to apply. For further information be held November 8-10 at the Massachusetts following the American Statistical about the Scholarship Program, Institute of Technology in Association annual meeting in Anaheim. The topics Information about these conferences please contact AAAI at scholarships@aaai.org, of seven symposia will be: is available by writing to All student scholarship recipients Context in Knowledge Representation Registration materials for AAAI-97, will be required to participate in the and Natural Language Sasa IAAI-97, and KDD-97 are now available Student Volunteer Program to support Buvac (buvac@cs.stanford.edu), For further information, participation is a valuable contribution.


A Neural Network Autoassociator for Induction Motor Failure Prediction

Neural Information Processing Systems

We present results on the use of neural network based autoassociators which act as novelty or anomaly detectors to detect imminent motor failures. The autoassociator is trained to reconstruct spectra obtained from the healthy motor. In laboratory tests, we have demonstrated that the trained autoassociator has a small reconstruction error on measurements recorded from healthy motors but a larger error on those recorded from a motor with a fault. We have designed and built a motor monitoring system using an autoassociator for anomaly detection and are in the process of testing the system at three industrial and commercial sites.


A Neural Network Autoassociator for Induction Motor Failure Prediction

Neural Information Processing Systems

We present results on the use of neural network based autoassociators which act as novelty or anomaly detectors to detect imminent motor failures. The autoassociator is trained to reconstruct spectra obtained from the healthy motor. In laboratory tests, we have demonstrated that the trained autoassociator has a small reconstruction error on measurements recorded from healthy motors but a larger error on those recorded from a motor with a fault. We have designed and built a motor monitoring system using an autoassociator for anomaly detection and are in the process of testing the system at three industrial and commercial sites.


A Neural Network Autoassociator for Induction Motor Failure Prediction

Neural Information Processing Systems

We present results on the use of neural network based autoassociators which act as novelty or anomaly detectors to detect imminent motor failures. The autoassociator is trained to reconstruct spectra obtained from the healthy motor. In laboratory tests, we have demonstrated that the trained autoassociator has a small reconstruction error on measurements recorded from healthy motors but a larger error on those recorded from a motor with a fault. We have designed and built a motor monitoring system using an autoassociator for anomaly detection and are in the process of testing the system at three industrial and commercial sites.


From Data Mining to Knowledge Discovery in Databases

AI Magazine

Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases are related both to each other and to related fields, such as machine learning, statistics, and databases. The article mentions particular real-world applications, specific data-mining techniques, challenges involved in real-world applications of knowledge discovery, and current and future research directions in the field.


From Data Mining to Knowledge Discovery in Databases

AI Magazine

Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases are related both to each other and to related fields, such as machine learning, statistics, and databases. The article mentions particular real-world applications, specific data-mining techniques, challenges involved in real-world applications of knowledge discovery, and current and future research directions in the field.