Goto

Collaborating Authors

 Data Mining


Knowware: the third star after Hardware and Software

arXiv.org Artificial Intelligence

This book proposes to separate knowledge from software and to make it a commodity that is called knowware. The architecture, representation and function of Knowware are discussed. The principles of knowware engineering and its three life cycle models: furnace model, crystallization model and spiral model are proposed and analyzed. Techniques of software/knowware co-engineering are introduced. A software component whose knowledge is replaced by knowware is called mixware. An object and component oriented development schema of mixware is introduced. In particular, the tower model and ladder model for mixware development are proposed and discussed. Finally, knowledge service and knowware based Web service are introduced and compared with Web service. In summary, knowware, software and hardware should be considered as three equally important underpinnings of IT industry. Ruqian Lu is a professor of computer science of the Institute of Mathematics, Academy of Mathematics and System Sciences. He is a fellow of Chinese Academy of Sciences. His research interests include artificial intelligence, knowledge engineering and knowledge based software engineering. He has published more than 100 papers and 10 books. He has won two first class awards from the Academia Sinica and a National second class prize from the Ministry of Science and Technology. He has also won the sixth Hua Loo-keng Mathematics Prize.


Analyzing covert social network foundation behind terrorism disaster

arXiv.org Artificial Intelligence

This paper addresses a method to analyze the covert social network foundation hidden behind the terrorism disaster. It is to solve a node discovery problem, which means to discover a node, which functions relevantly in a social network, but escaped from monitoring on the presence and mutual relationship of nodes. The method aims at integrating the expert investigator's prior understanding, insight on the terrorists' social network nature derived from the complex graph theory, and computational data processing. The social network responsible for the 9/11 attack in 2001 is used to execute simulation experiment to evaluate the performance of the method.


Semantic distillation: a method for clustering objects by their contextual specificity

arXiv.org Machine Learning

Techniques for data-mining, latent semantic analysis, contextual search of databases, etc. have long ago been developed by computer scientists working on information retrieval (IR). Experimental scientists, from all disciplines, having to analyse large collections of raw experimental data (astronomical, physical, biological, etc.) have developed powerful methods for their statistical analysis and for clustering, categorising, and classifying objects. Finally, physicists have developed a theory of quantum measurement, unifying the logical, algebraic, and probabilistic aspects of queries into a single formalism. The purpose of this paper is twofold: first to show that when formulated at an abstract level, problems from IR, from statistical data analysis, and from physical measurement theories are very similar and hence can profitably be cross-fertilised, and, secondly, to propose a novel method of fuzzy hierarchical clustering, termed \textit{semantic distillation} -- strongly inspired from the theory of quantum measurement --, we developed to analyse raw data coming from various types of experiments on DNA arrays. We illustrate the method by analysing DNA arrays experiments and clustering the genes of the array according to their specificity.


Ensemble Learning for Free with Evolutionary Algorithms ?

arXiv.org Artificial Intelligence

Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles.


Group and Topic Discovery from Relations and Their Attributes

Neural Information Processing Systems

We present a probabilistic generative model of entity relationships and their attributes that simultaneously discovers groups among the entities and topics among the corresponding textual attributes. Block-models of relationship data have been studied in social network analysis for some time. Here we simultaneously cluster in several modalities at once, incorporating the attributes (here, words) associated with certain relationships. Significantly, joint inference allows the discovery of topics to be guided by the emerging groups, and vice-versa. We present experimental results on two large data sets: sixteen years of bills put before the U.S. Senate, comprising their corresponding text and voting records, and thirteen years of similar data from the United Nations. We show that in comparison with traditional, separate latent-variable models for words, or Blockstructures for votes, the Group-Topic model's joint inference discovers more cohesive groups and improved topics.


Metric Learning by Collapsing Classes

Neural Information Processing Systems

We present an algorithm for learning a quadratic Gaussian metric (Mahalanobis distance)for use in classification tasks. Our method relies on the simple geometric intuition that a good metric is one under which points in the same class are simultaneously near each other and far from points in the other classes. We construct a convex optimization problem whose solution generates such a metric by trying to collapse all examples in the same class to a single point and push examples in other classes infinitely far away. We show that when the metric we learn is used in simple classifiers, ityields substantial improvements over standard alternatives on a variety of problems. We also discuss how the learned metric may be used to obtain a compact low dimensional feature representation of the original input space, allowing more efficient classification with very little reduction in performance.



Group and Topic Discovery from Relations and Their Attributes

Neural Information Processing Systems

We present a probabilistic generative model of entity relationships and their attributes that simultaneously discovers groups among the entities and topics among the corresponding textual attributes. Block-models of relationship data have been studied in social network analysis for some time. Here we simultaneously cluster in several modalities at once, incorporating the attributes (here, words) associated with certain relationships. Significantly, joint inference allows the discovery of topics to be guided by the emerging groups, and vice-versa. We present experimental results on two large data sets: sixteen years of bills put before the U.S. Senate, comprising their corresponding text and voting records, and thirteen years of similar data from the United Nations. We show that in comparison with traditional, separate latent-variable models for words, or Block-structures for votes, the Group-Topic model's joint inference discovers more cohesive groups and improved topics.


Separation of Music Signals by Harmonic Structure Modeling

Neural Information Processing Systems

Separation of music signals is an interesting but difficult problem. It is helpful for many other music researches such as audio content analysis. In this paper, a new music signal separation method is proposed, which is based on harmonic structure modeling. The main idea of harmonic structure modelingis that the harmonic structure of a music signal is stable, so a music signal can be represented by a harmonic structure model. Accordingly, acorresponding separation algorithm is proposed. The main idea is to learn a harmonic structure model for each music signal in the mixture, and then separate signals by using these models to distinguish harmonic structures of different signals. Experimental results show that the algorithm can separate signals and obtain not only a very high Signalto-Noise Ratio(SNR) but also a rather good subjective audio quality.


The 2005 International Florida Artificial Intelligence Research Society Conference (FLAIRS-05): A Report

AI Magazine

Several special tracks included a significant number of presentations. Zdravko Markov and Larry Holder, was the most extensive, with 18 papers presented of the 35 submitted. The conference continues by Vasile Rus, was the second largest. The last few years have seen a significant reception. This year's conference received version for publication consideration A best paper award was presented to Jeffrey A. Coble, Diane J. Cook, and The program included a general session Lawrence B. Holder of the University with many excellent papers spanning of Texas at Arlington for their paper titled a broad range of AI research areas "Structure Discovery in Sequentially and covering traditional topics such as Connected Data."