Data Mining
Link Discovery using Graph Feature Tracking
Richard, Emile, Baskiotis, Nicolas, Evgeniou, Theodoros, Vayatis, Nicolas
We consider the problem of discovering links of an evolving undirected graph given a series of past snapshots of that graph. The graph is observed through the time sequence of its adjacency matrix and only the presence of edges is observed. The absence of an edge on a certain snapshot cannot be distinguished from a missing entry in the adjacency matrix. Additional information can be provided by examining the dynamics of the graph through a set of topological features, such as the degrees of the vertices. We develop a novel methodology by building on both static matrix completion methods and the estimation of the future state of relevant graph features. Our procedure relies on the formulation of an optimization problem which can be approximately solved by a fast alternating linearized algorithm whose properties are examined. We show experiments with both simulated and real data which reveal the interest of our methodology.
Joint Cascade Optimization Using A Product Of Boosted Classifiers
Lefakis, Leonidas, Fleuret, Francois
The standard strategy for efficient object detection consists of building a cascade composed of several binary classifiers. The detection process takes the form of a lazy evaluation of the conjunction of the responses of these classifiers, and concentrates the computation on difficult parts of the image which can not be trivially rejected. We introduce a novel algorithm to construct jointly the classifiers of such a cascade. We interpret the response of a classifier as a probability of a positive prediction, and the overall response of the cascade as the probability that all the predictions are positive. From this noisy-AND model, we derive a consistent loss and a Boosting procedure to optimize that global probability on the training set. Such a joint learning allows the individual predictors to focus on a more restricted modeling problem, and improves the performance compared to a standard cascade. We demonstrate the efficiency of this approach on face and pedestrian detection with standard data-sets and comparisons with reference baselines.
Deep Coding Network
Lin, Yuanqing, Zhang, Tong, Zhu, Shenghuo, Yu, Kai
This paper proposes a principled extension of the traditional single-layer flat sparse coding scheme, where a two-layer coding scheme is derived based on theoretical analysis of nonlinear functional approximation that extends recent results for local coordinate coding. The two-layer approach can be easily generalized to deeper structures in a hierarchical multiple-layer manner. Empirically, it is shown that the deep coding approach yields improved performance in benchmark datasets.
Subgraph Detection Using Eigenvector L1 Norms
Miller, Benjamin, Bliss, Nadya, Wolfe, Patrick J.
When working with network datasets, the theoretical framework of detection theory for Euclidean vector spaces no longer applies. Nevertheless, it is desirable to determine the detectability of small, anomalous graphs embedded into background networks with known statistical properties. Casting the problem of subgraph detection in a signal processing context, this article provides a framework and empirical results that elucidate a detection theory" for graph-valued data. Its focus is the detection of anomalies in unweighted, undirected graphs through L1 properties of the eigenvectors of the graph’s so-called modularity matrix. This metric is observed to have relatively low variance for certain categories of randomly-generated graphs, and to reveal the presence of an anomalous subgraph with reasonable reliability when the anomaly is not well-correlated with stronger portions of the background graph. An analysis of subgraphs in real network datasets confirms the efficacy of this approach."
Random Projections for $k$-means Clustering
Boutsidis, Christos, Zouzias, Anastasios, Drineas, Petros
This paper discusses the topic of dimensionality reduction for $k$-means clustering. We prove that any set of $n$ points in $d$ dimensions (rows in a matrix $A \in \RR^{n \times d}$) can be projected into $t = \Omega(k / \eps^2)$ dimensions, for any $\eps \in (0,1/3)$, in $O(n d \lceil \eps^{-2} k/ \log(d) \rceil )$ time, such that with constant probability the optimal $k$-partition of the point set is preserved within a factor of $2+\eps$. The projection is done by post-multiplying $A$ with a $d \times t$ random matrix $R$ having entries $+1/\sqrt{t}$ or $-1/\sqrt{t}$ with equal probability. A numerical implementation of our technique and experiments on a large face images dataset verify the speed and the accuracy of our theoretical results.
Supervised Random Walks: Predicting and Recommending Links in Social Networks
Predicting the occurrence of links is a fundamental problem in networks. In the link prediction problem we are given a snapshot of a network and would like to infer which interactions among existing members are likely to occur in the near future or which existing interactions are we missing. Although this problem has been extensively studied, the challenge of how to effectively combine the information from the network structure with rich node and edge attribute data remains largely open. We develop an algorithm based on Supervised Random Walks that naturally combines the information from the network structure with node and edge level attributes. We achieve this by using these attributes to guide a random walk on the graph. We formulate a supervised learning task where the goal is to learn a function that assigns strengths to edges in the network such that a random walker is more likely to visit the nodes to which new links will be created in the future. We develop an efficient training algorithm to directly learn the edge strength estimation function. Our experiments on the Facebook social graph and large collaboration networks show that our approach outperforms state-of-the-art unsupervised approaches as well as approaches that are based on feature extraction.
Brain covariance selection: better individual functional connectivity models using population prior
Varoquaux, Gaël, Gramfort, Alexandre, Poline, Jean Baptiste, Thirion, Bertrand
Spontaneous brain activity, as observed in functional neuroimaging, has been shown to display reproducible structure that expresses brain architecture and carries markers of brain pathologies. An important view of modern neuroscience is that such large-scale structure of coherent activity reflects modularity properties of brain connectivity graphs. However, to date, there has been no demonstration that the limited and noisy data available in spontaneous activity observations could be used to learn full-brain probabilistic models that generalize to new data. Learning such models entails two main challenges: i) modeling full brain connectivity is a difficult estimation problem that faces the curse of dimensionality and ii) variability between subjects, coupled with the variability of functional signals between experimental runs, makes the use of multiple datasets challenging. We describe subject-level brain functional connectivity structure as a multivariate Gaussian process and introduce a new strategy to estimate it from group data, by imposing a common structure on the graphical model in the population. We show that individual models learned from functional Magnetic Resonance Imaging (fMRI) data using this population prior generalize better to unseen data than models based on alternative regularization schemes. To our knowledge, this is the first report of a cross-validated model of spontaneous brain activity. Finally, we use the estimated graphical model to explore the large-scale characteristics of functional architecture and show for the first time that known cognitive networks appear as the integrated communities of functional connectivity graph.
The Concept Game: Better Commonsense Knowledge Extraction by Combining Text Mining and a Game with a Purpose
Herdagdelen, Amac (University of Trento) | Baroni, Marco (University of Trento)
Common sense collection has long been an important subfield of AI. This paper introduces a combined architecture for commonsense harvesting by text mining and a game with a purpose. The text miner module uses a seed set of known facts (sampled from ConceptNet) as training data and produces candidate commonsense facts mined from corpora. The game module taps humans' knowledge about the world by letting them play a simple slot-machine-like game. The proposed system allows us to collect significantly better commonsense facts than the state-of-the-art text miner alone, as shown experimentally for 5 rather different types of commonsense relations.
Extracting Action and Event Semantics from Web Text
Sil, Avirup (Temple University) | Huang, Fei (Temple University) | Yates, Alexander (Temple University)
Most information extraction research identifies the state of the world in text, including the entities and the relationships that exist between them. Much less attention has been paid to the understanding of dynamics, or how the state of the world changes over time. Because intelligent behavior seeks to change the state of the world in rational and utility-maximizing ways, common-sense knowledge about dynamics is essential for intelligent agents. In this paper, we describe a novel system, Prepost , that tackles the problem of extracting the preconditions and effects of actions and events, two important kinds of knowledge for connecting world state and the actions that affect it. In experiments on Web text, Prepost is able to improve by 79% over a baseline technique for identifying the effects of actions (64% improvement for preconditions).
Non-Sparse Regularization for Multiple Kernel Learning
Kloft, Marius, Brefeld, Ulf, Sonnenburg, Soeren, Zien, Alexander
Learning linear combinations of multiple kernels is an appealing strategy when the right choice of features is unknown. Previous approaches to multiple kernel learning (MKL) promote sparse kernel combinations to support interpretability and scalability. Unfortunately, this 1-norm MKL is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures, we generalize MKL to arbitrary norms. We devise new insights on the connection between several existing MKL formulations and develop two efficient interleaved optimization strategies for arbitrary norms, like p-norms with p>1. Empirically, we demonstrate that the interleaved optimization strategies are much faster compared to the commonly used wrapper approaches. A theoretical analysis and an experiment on controlled artificial data experiment sheds light on the appropriateness of sparse, non-sparse and $\ell_\infty$-norm MKL in various scenarios. Empirical applications of p-norm MKL to three real-world problems from computational biology show that non-sparse MKL achieves accuracies that go beyond the state-of-the-art.