Goto

Collaborating Authors

 Data Mining


Sparse Manifold Clustering and Embedding

Neural Information Processing Systems

We propose an algorithm called Sparse Manifold Clustering and Embedding (SMCE) for simultaneous clustering and dimensionality reduction of data lying in multiple nonlinear manifolds. Similar to most dimensionality reduction methods, SMCE finds a small neighborhood around each data point and connects each point to its neighbors with appropriate weights. The key difference is that SMCE finds both the neighbors and the weights automatically. This is done by solving a sparse optimization problem, which encourages selecting nearby points that lie in the same manifold and approximately span a low-dimensional affine subspace. The optimal solution encodes information that can be used for clustering and dimensionality reduction using spectral clustering and embedding. Moreover, the size of the optimal neighborhood of a data point, which can be different for different points, provides an estimate of the dimension of the manifold to which the point belongs. Experiments demonstrate that our method can effectively handle multiple manifolds that are very close to each other, manifolds with non-uniform sampling and holes, as well as estimate the intrinsic dimensions of the manifolds.


Group Anomaly Detection using Flexible Genre Models

Neural Information Processing Systems

An important task in exploring and analyzing real-world data sets is to detect unusual and interesting phenomena. In this paper, we study the group anomaly detection problem. Unlike traditional anomaly detection research that focuses on data points, our goal is to discover anomalous aggregated behaviors of groups of points. For this purpose, we propose the Flexible Genre Model (FGM). FGM is designed to characterize data groups at both the point level and the group level so as to detect various types of group anomalies. We evaluate the effectiveness of FGM on both synthetic and real data sets including images and turbulence data, and show that it is superior to existing approaches in detecting group anomalies.


An Empirical Evaluation of Thompson Sampling

Neural Information Processing Systems

Thompson sampling is one of oldest heuristic to address the exploration / exploitation trade-off, but it is surprisingly not very popular in the literature. We present here some empirical results using Thompson sampling on simulated and real data, and show that it is highly competitive. And since this heuristic is very easy to implement, we argue that it should be part of the standard baselines to compare against.


Contextual Gaussian Process Bandit Optimization

Neural Information Processing Systems

How should we design experiments to maximize performance of a complex system, taking into account uncontrollable environmental conditions? How should we select relevant documents (ads) to display, given information about the user? These tasks can be formalized as contextual bandit problems, where at each round, we receive context (about the experimental conditions, the query), and have to choose an action (parameters, documents). The key challenge is to trade off exploration by gathering data for estimating the mean payoff function over the context-action space, and to exploit by choosing an action deemed optimal based on the gathered data. We model the payoff function as a sample from a Gaussian process defined over the joint context-action space, and develop CGP-UCB, an intuitive upper-confidence style algorithm. We show that by mixing and matching kernels for contexts and actions, CGP-UCB can handle a variety of practical applications. We further provide generic tools for deriving regret bounds when using such composite kernel functions. Lastly, we evaluate our algorithm on two case studies, in the context of automated vaccine design and sensor management. We show that context-sensitive optimization outperforms no or naive use of context.


Shaping Level Sets with Submodular Functions

Neural Information Processing Systems

We consider a class of sparsity-inducing regularization terms based on submodular functions. While previous work has focused on non-decreasing functions, we explore symmetric submodular functions and their \lova extensions. We show that the Lovasz extension may be seen as the convex envelope of a function that depends on level sets (i.e., the set of indices whose corresponding components of the underlying predictor are greater than a given constant): this leads to a class of convex structured regularization terms that impose prior knowledge on the level sets, and not only on the supports of the underlying predictors. We provide a unified set of optimization algorithms, such as proximal operators, and theoretical guarantees (allowed level sets and recovery conditions). By selecting specific submodular functions, we give a new interpretation to known norms, such as the total variation; we also define new norms, in particular ones that are based on order statistics with application to clustering and outlier detection, and on noisy cuts in graphs with application to change point detection in the presence of outliers.


Multi-Bandit Best Arm Identification

Neural Information Processing Systems

We study the problem of identifying the best arm in each of the bandits in a multi-bandit multi-armed setting. We first propose an algorithm called Gap-based Exploration (GapE) that focuses on the arms whose mean is close to the mean of the best arm in the same bandit (i.e., small gap). We then introduce an algorithm, called GapE-V, which takes into account the variance of the arms in addition to their gap. We prove an upper-bound on the probability of error for both algorithms. Since GapE and GapE-V need to tune an exploration parameter that depends on the complexity of the problem, which is often unknown in advance, we also introduce variations of these algorithms that estimate this complexity online. Finally, we evaluate the performance of these algorithms and compare them to other allocation strategies on a number of synthetic problems.


See the Tree Through the Lines: The Shazoo Algorithm

Neural Information Processing Systems

Predicting the nodes of a given graph is a fascinating theoretical problem with applications in several domains. Since graph sparsification via spanning trees retains enough information while making the task much easier, trees are an important special case of this problem. Although it is known how to predict the nodes of an unweighted tree in a nearly optimal way, in the weighted case a fully satisfactory algorithm is not available yet. We fill this hole and introduce an efficient node predictor, Shazoo, which is nearly optimal on any weighted tree. Moreover, we show that Shazoo can be viewed as a common nontrivial generalization of both previous approaches for unweighted trees and weighted lines. Experiments on real-world datasets confirm that Shazoo performs well in that it fully exploits the structure of the input tree, and gets very close to (and sometimes better than) less scalable energy minimization methods.


Committing Bandits

Neural Information Processing Systems

We consider a multi-armed bandit problem where there are two phases. The first phase is an experimentation phase where the decision maker is free to explore multiple options. In the second phase the decision maker has to commit to one of the arms and stick with it. Cost is incurred during both phases with a higher cost during the experimentation phase. We analyze the regret in this setup, and both propose algorithms and provide upper and lower bounds that depend on the ratio of the duration of the experimentation phase to the duration of the commitment phase. Our analysis reveals that if given the choice, it is optimal to experiment $\Theta(\ln T)$ steps and then commit, where $T$ is the time horizon.


Linear Submodular Bandits and their Application to Diversified Retrieval

Neural Information Processing Systems

Diversified retrieval and online learning are two core research areas in the design of modern information retrieval systems. In this paper, we propose the linear submodular banditsproblem, which is an online learning setting for optimizing a general class of feature-rich submodular utility models for diversified retrieval. We present an algorithm, called LSBGREEDY, and prove that it efficiently converges to a near-optimal model. As a case study, we applied our approach to the setting of personalized news recommendation, where the system must recommend small sets of news articles selected from tens of thousands of available articles each day. In a live user study, we found that LSBGREEDY significantly outperforms existing online learning approaches.


Newtron: an Efficient Bandit algorithm for Online Multiclass Prediction

Neural Information Processing Systems

We present an efficient algorithm for the problem of online multiclass prediction with bandit feedback in the fully adversarial setting. We measure its regret with respect to the log-loss defined in \cite{AbernethyR09}, which is parameterized by a scalar \(\alpha\). We prove that the regret of \newtron is \(O(\log T)\) when \(\alpha\) is a constant that does not vary with horizon \(T\), and at most \(O(T^{2/3})\) if \(\alpha\) is allowed to increase to infinity with \(T\). For \(\alpha\) = \(O(\log T)\), the regret is bounded by \(O(\sqrt{T})\), thus solving the open problem of \cite{KST08, AbernethyR09}. Our algorithm is based on a novel application of the online Newton method \cite{HAK07}. We test our algorithm and show it to perform well in experiments, even when \(\alpha\) is a small constant.