Data Mining
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
The widespread deployment of Graph Neural Networks (GNNs) sparks significant interest in their explainability, which plays a vital role in model auditing and ensuring trustworthy graph learning. The objective of GNN explainability is to discern the underlying graph structures that have the most significant impact on model predictions. Ensuring that explanations generated are reliable necessitates consideration of the in-distribution property, particularly due to the vulnerability of GNNs to out-of-distribution data. Unfortunately, prevailing explainability methods tend to constrain the generated explanations to the structure of the original graph, thereby downplaying the significance of the in-distribution property and resulting in explanations that lack reliability. To address these challenges, we propose D4Explainer, a novel approach that provides in-distribution GNN explanations for both counterfactual and model-level explanation scenarios. The proposed D4Explainer incorporates generative graph distribution learning into the optimization objective, which accomplishes two goals: 1) generate a collection of diverse counterfactual graphs that conform to the in-distribution property for a given instance, and 2) identify the most discriminative graph patterns that contribute to a specific class prediction, thus serving as model-level explanations. It is worth mentioning that D4Explainer is the first unified framework that combines both counterfactual and model-level explanations. Empirical evaluations conducted on synthetic and real-world datasets provide compelling evidence of the state-ofthe-art performance achieved by D4Explainer in terms of explanation accuracy, faithfulness, diversity, and robustness.
The Equivalence of Dynamic and Strategic Stability under Regularized Learning in Games
In this paper, we examine the long-run behavior of regularized, no-regret learning in finite games. A well-known result in the field states that the empirical frequencies of no-regret play converge to the game's set of coarse correlated equilibria; however, our understanding of how the players' actual strategies evolve over time is much more limited - and, in many cases, non-existent. This issue is exacerbated by a series of recent results showing that only strict Nash equilibria are stable and attracting under regularized learning, thus making the relation between learning and pointwise solution concepts particularly elusive. In lieu of this, we take a more general approach and instead seek to characterize the setwise rationality properties of the players' day-to-day play. To that end, we focus on one of the most stringent criteria of setwise strategic stability, namely that any unilateral deviation from the set in question incurs a cost to the deviator - a property known as closedness under better replies (club). In so doing, we obtain a far-reaching equivalence between strategic and dynamic stability: a product of pure strategies is closed under better replies if and only if its span is stable and attracting under regularized learning. In addition, we estimate the rate of convergence to such sets, and we show that methods based on entropic regularization (like the exponential weights algorithm) converge at a geometric rate, while projection-based methods converge within a finite number of iterations, even with bandit, payoff-based feedback.