Data Mining
Regret Bounds for Online Portfolio Selection with a Cardinality Constraint
Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, Ken-Ichi Kawarabayashi
Online portfolio selection is a sequential decision-making problem in which a learner repetitively selects a portfolio over a set of assets, aiming to maximize long-term return. In this paper, we study the problem with the cardinality constraint that the number of assets in a portfolio is restricted to be at most k, and consider two scenarios: (i) in the full-feedback setting, the learner can observe price relatives (rates of return to cost) for all assets, and (ii) in the bandit-feedback setting, the learner can observe price relatives only for invested assets. We propose efficient algorithms for these scenarios, which achieve sublinear regrets. We also provide regret (statistical) lower bounds for both scenarios which nearly match the upper bounds when k is a constant. In addition, we give a computational lower bound, which implies that no algorithm maintains both computational efficiency, as well as a small regret upper bound.
Link Prediction Based on Graph Neural Networks
Link prediction is a key problem for network-structured data. Link prediction heuristics use some score functions, such as common neighbors and Katz index, to measure the likelihood of links. They have obtained wide practical uses due to their simplicity, interpretability, and for some of them, scalability. However, every heuristic has a strong assumption on when two nodes are likely to link, which limits their effectiveness on networks where these assumptions fail. In this regard, a more reasonable way should be learning a suitable heuristic from a given network instead of using predefined ones.
Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch
Osman Asif Malik, Stephen Becker
We propose two randomized algorithms for low-rank Tucker decomposition of tensors. The algorithms, which incorporate sketching, only require a single pass of the input tensor and can handle tensors whose elements are streamed in any order. To the best of our knowledge, ours are the only algorithms which can do this. We test our algorithms on sparse synthetic data and compare them to multiple other methods. We also apply one of our algorithms to a real dense 38 GB tensor representing a video and use the resulting decomposition to correctly classify frames containing disturbances.
Unorganized Malicious Attacks Detection
Ming Pang, Wei Gao, Min Tao, Zhi-Hua Zhou
Recommender systems have attracted much attention during the past decade. Many attack detection algorithms have been developed for better recommendations, mostly focusing on shilling attacks, where an attack organizer produces a large number of user profiles by the same strategy to promote or demote an item. This work considers another different attack style: unorganized malicious attacks, where attackers individually utilize a small number of user profiles to attack different items without organizer. This attack style occurs in many real applications, yet relevant study remains open. We formulate the unorganized malicious attacks detection as a matrix completion problem, and propose the Unorganized Malicious Attacks detection (UMA) algorithm, based on the alternating splitting augmented Lagrangian method. We verify, both theoretically and empirically, the effectiveness of the proposed approach.