Data Mining
Extremal Domain Translation with Neural Optimal Transport
In many unpaired image domain translation problems, e.g., style transfer or superresolution, it is important to keep the translated image similar to its respective input image. We propose the extremal transport (ET) which is a mathematical formalization of the theoretically best possible unpaired translation between a pair of domains w.r.t. the given similarity function. Inspired by the recent advances in neural optimal transport (OT), we propose a scalable algorithm to approximate ET maps as a limit of partial OT maps. We test our algorithm on toy examples and on the unpaired image-to-image translation task.
Trading-off price for data quality to achieve fair online allocation
We consider the problem of online allocation subject to a long-term fairness penalty. Contrary to existing works, however, we do not assume that the decision-maker observes the protected attributes--which is often unrealistic in practice. Instead they can purchase data that help estimate them from sources of different quality; and hence reduce the fairness penalty at some cost. We model this problem as a multi-armed bandit problem where each arm corresponds to the choice of a data source, coupled with the online allocation problem. We propose an algorithm that jointly solves both problems and show that it has a regret bounded by O( T). A key difficulty is that the rewards received by selecting a source are correlated by the fairness penalty, which leads to a need for randomization (despite a stochastic setting). Our algorithm takes into account contextual information available before the source selection, and can adapt to many different fairness notions. We also show that in some instances, the estimates used can be learned on the fly.
Tractable Optimality in Episodic Latent MABs
We consider a multi-armed bandit problem with A actions and M latent contexts, where an agent interacts with the environment for an episode of H time steps. Depending on the length of the episode, the learner may not be able to estimate accurately the latent context. The resulting partial observation of the environment makes the learning task significantly more challenging.
Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Time Series Classification (TSC) encompasses two settings: classifying entire sequences or classifying segmented subsequences. The raw time series for segmented TSC usually contain Multiple classes with Varying Duration of each class (MVD). Therefore, the characteristics of MVD pose unique challenges for segmented TSC, yet have been largely overlooked by existing works. Specifically, there exists a natural temporal dependency between consecutive instances (segments) to be classified within MVD. However, mainstream TSC models rely on the assumption of independent and identically distributed (i.i.d.), focusing on independently modeling each segment. Additionally, annotators with varying expertise may provide inconsistent boundary labels, leading to unstable performance of noise-free TSC models. To address these challenges, we first formally demonstrate that valuable contextual information enhances the discriminative power of classification instances. Leveraging the contextual priors of MVD at both the data and label levels, we propose a novel consistency learning framework Con4m, which effectively utilizes contextual information more conducive to discriminating consecutive segments in segmented TSC tasks, while harmonizing inconsistent boundary labels for training.
Conformal Classification with Equalized Coverage for Adaptively Selected Groups
This paper introduces a conformal inference method to evaluate uncertainty in classification by generating prediction sets with valid coverage conditional on adaptively chosen features. These features are carefully selected to reflect potential model limitations or biases. This can be useful to find a practical compromise between efficiency--by providing informative predictions--and algorithmic fairness-- by ensuring equalized coverage for the most sensitive groups. We demonstrate the validity and effectiveness of this method on simulated and real data sets.
DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting
Deep neural networks (DNNs) have recently achieved remarkable advancements in time series forecasting (TSF) due to their powerful ability of sequence dependence modeling. To date, existing DNN-based TSF methods still suffer from unreliable predictions for real-world data due to its non-stationarity characteristics, i.e., data distribution varies quickly over time. To mitigate this issue, several normalization methods (e.g., SAN) have recently been specifically designed by normalization in a fixed period/window in the time domain. However, these methods still struggle to capture distribution variations, due to the complex time patterns of time series in the time domain. Based on the fact that wavelet transform can decompose time series into a linear combination of different frequencies, which exhibits distribution variations with time-varying periods, we propose a novel Dual-domain Dynamic Normalization (DDN) to dynamically capture distribution variations in both time and frequency domains. Specifically, our DDN tries to eliminate the non-stationarity of time series via both frequency and time domain normalization in a sliding window way. Besides, our DDN can serve as a plug-in-play module, and thus can be easily incorporated into other forecasting models. Extensive experiments on public benchmark datasets under different forecasting models demonstrate the superiority of our DDN over other normalization methods. Code is available at https://github.com/Hank0626/DDN.
The Elephant in the Room: Towards A Reliable Time-Series Anomaly Detection Benchmark
Time-series anomaly detection is a fundamental task across scientific fields and industries. However, the field has long faced the "elephant in the room:" critical issues including flawed datasets, biased evaluation measures, and inconsistent benchmarking practices that have remained largely ignored and unaddressed. We introduce the TSB-AD to systematically tackle these issues in the following three aspects: (i) Dataset Integrity: with 1070 high-quality time series from a diverse collection of 40 datasets (doubling the size of the largest collection and four times the number of existing curated datasets), we provide the first large-scale, heterogeneous, meticulously curated dataset that combines the effort of human perception and model interpretation; (ii) Measure Reliability: by revealing issues and biases in evaluation measures, we identify the most reliable and accurate measure, namely, VUS-PR for anomaly detection in time series to address concerns from the community; and (iii) Comprehensive Benchmarking: with a broad spectrum of 40 detection algorithms, from statistical methods to the latest foundation models, we perform a comprehensive evaluation that includes a thorough hyperparameter tuning and a unified setup for a fair and reproducible comparison. Our findings challenge the conventional wisdom regarding the superiority of advanced neural network architectures, revealing that simpler architectures and statistical methods often yield better performance. The promising performance of neural networks on multivariate cases and foundation models on point anomalies highlights the need for further advancements in these methods.