Social Media
Checklist
For all authors... (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? If you ran experiments (e.g. for benchmarks)... (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] See A.2 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? The data was accessed from publicly accessible sources, and no private or sensitive information was collected or utilized in this study. If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [Yes] See A.5 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? PAPERS is a dataset of conversational question-answer pairs from reviews of academic papers grounded in these paper components and their associated references from scientific documents available on arXiv.
Map It Anywhere (MIA): Empowering Bird's Eye View Mapping using Large-scale Public Data Cherie Ho1 Omar Alama 1
Top-down Bird's Eye View (BEV) maps are a popular perceptual representation for ground robot navigation due to their richness and flexibility for downstream tasks. While recent methods have shown promise for predicting BEV maps from First-Person View (FPV) images, their generalizability is limited to small regions captured by current autonomous vehicle-based datasets. In this context, we show that a more scalable approach towards generalizable map prediction can be enabled by using two large-scale crowd-sourced mapping platforms, Mapillary for FPV images and OpenStreetMap for BEV semantic maps. We introduce Map It Anywhere (MIA), a data engine that enables seamless curation and modeling of labeled map prediction data from existing open-source map platforms. Using our MIA data engine, we display the ease of automatically collecting a dataset of 1.2 million pairs of FPV images & BEV maps encompassing diverse geographies, landscapes, environmental factors, camera models & capture scenarios.
T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models
The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its safety risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover limited aspects and do not address the unique temporal risk inherent in video generation.
UGC: Universal Graph Coarsening
In the era of big data, graphs have emerged as a natural representation of intricate relationships. However, graph sizes often become unwieldy, leading to storage, computation, and analysis challenges. A crucial demand arises for methods that can effectively downsize large graphs while retaining vital insights. Graph coarsening seeks to simplify large graphs while maintaining the basic statistics of the graphs, such as spectral properties and ฯต-similarity in the coarsened graph. This ensures that downstream processes are more efficient and effective.
TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs
Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models (PLMs), graph neural networks (GNNs), proposed novel entangled GNNs and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks.
The viral emotional support kangaroo is an AI creation
You might've seen those viral images and videos of the emotional support kangaroo in an airport. Hopefully, you at least wondered if the video was AI-generated. Or maybe you were fooled by a quick scroll. We're here to tell that, yes, the viral emotional support kangaroo was indeed AI-generated. Here is the video in question.