Plotting

 taxnodes:Technology: Instructional Materials


Learning via Surrogate PAC-Bayes, France SUEZ

Neural Information Processing Systems

PAC-Bayes learning is a comprehensive setting for (i) studying the generalisation ability of learning algorithms and (ii) deriving new learning algorithms by optimising a generalisation bound. However, optimising generalisation bounds might not always be viable for tractable or computational reasons, or both. For example, iteratively querying the empirical risk might prove computationally expensive. In response, we introduce a novel principled strategy for building an iterative learning algorithm via the optimisation of a sequence of surrogate training objectives, inherited from PAC-Bayes generalisation bounds. The key argument is to replace the empirical risk (seen as a function of hypotheses) in the generalisation bound by its projection onto a constructible low dimensional functional space: these projections can be queried much more efficiently than the initial risk. On top of providing that generic recipe for learning via surrogate PAC-Bayes bounds, we (i) contribute theoretical results establishing that iteratively optimising our surrogates implies the optimisation of the original generalisation bounds, (ii) instantiate this strategy to the framework of meta-learning, introducing a meta-objective offering a closed form expression for meta-gradient, (iii) illustrate our approach with numerical experiments inspired by an industrial biochemical problem.


Pseudo-Spherical Contrastive Divergence Jiaming Song Computer Science Department Computer Science Department Stanford University

Neural Information Processing Systems

However, due to the intractable partition function, they are typically trained via contrastive divergence for maximum likelihood estimation. In this paper, we propose pseudo-spherical contrastive divergence (PS-CD) to generalize maximum likelihood learning of EBMs. PS-CD is derived from the maximization of a family of strictly proper homogeneous scoring rules, which avoids the computation of the intractable partition function and provides a generalized family of learning objectives that include contrastive divergence as a special case. Moreover, PS-CD allows us to flexibly choose various learning objectives to train EBMs without additional computational cost or variational minimax optimization. Theoretical analysis on the proposed method and extensive experiments on both synthetic data and commonly used image datasets demonstrate the effectiveness and modeling flexibility of PS-CD, as well as its robustness to data contamination, thus showing its superiority over maximum likelihood and f-EBMs.


Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments

Neural Information Processing Systems

Autonomous agents that accomplish complex computer tasks with minimal human interventions can significantly enhance accessibility and productivity of humancomputer interactions. Existing benchmarks either lack interactive environments or are limited to specific applications/domains, failing to reflect the diversity and complexity of real-world computer use and limiting agent scalability.





Generative vs Discriminative: Rethinking The Meta-Continual Learning

Neural Information Processing Systems

Deep neural networks have achieved human-level capabilities in various learning tasks. However, they generally lose performance in more realistic scenarios like learning in a continual manner. In contrast, humans can incorporate their prior knowledge to learn new concepts efficiently without forgetting older ones. In this work, we leverage meta-learning to encourage the model to learn how to learn continually. Inspired by human concept learning, we develop a generative classifier that efficiently uses data-driven experience to learn new concepts even from few samples while being immune to forgetting. Along with cognitive and theoretical insights, extensive experiments on standard benchmarks demonstrate the effectiveness of the proposed method. The ability to remember all previous concepts, with negligible computational and structural overheads, suggests that generative models provide a natural way for alleviating catastrophic forgetting, which is a major drawback of discriminative models. The code is publicly available at https://github.com/aminbana/GeMCL.


Dealing with Synthetic Data Contamination in Online Continual Learning Maorong Wang Nicolas Michel 1,2 Jiafeng Mao 1

Neural Information Processing Systems

Image generation has shown remarkable results in generating high-fidelity realistic images, in particular with the advancement of diffusion-based models. However, the prevalence of AI-generated images may have side effects for the machine learning community that are not clearly identified. Meanwhile, the success of deep learning in computer vision is driven by the massive dataset collected on the Internet. The extensive quantity of synthetic data being added to the Internet would become an obstacle for future researchers to collect "clean" datasets without AI-generated content. Prior research has shown that using datasets contaminated by synthetic images may result in performance degradation when used for training. In this paper, we investigate the potential impact of contaminated datasets on Online Continual Learning (CL) research. We experimentally show that contaminated datasets might hinder the training of existing online CL methods. Also, we propose Entropy Selection with Real-synthetic similarity Maximization (ESRM), a method to alleviate the performance deterioration caused by synthetic images when training online CL models. Experiments show that our method can significantly alleviate performance deterioration, especially when the contamination is severe.


Data to Decisions: A Computational Framework to Identify skill requirements from Advertorial Data

arXiv.org Artificial Intelligence

Among the factors of production, human capital or skilled manpower is the one that keeps evolving and adapts to changing conditions and resources. This adaptability makes human capital the most crucial factor in ensuring a sustainable growth of industry/sector. As new technologies are developed and adopted, the new generations are required to acquire skills in newer technologies in order to be employable. At the same time professionals are required to upskill and reskill themselves to remain relevant in the industry. There is however no straightforward method to identify the skill needs of the industry at a given point of time. Therefore, this paper proposes a data to decision framework that can successfully identify the desired skill set in a given area by analysing the advertorial data collected from popular online job portals and supplied as input to the framework. The proposed framework uses techniques of statistical analysis, data mining and natural language processing for the purpose. The applicability of the framework is demonstrated on CS&IT job advertisement data from India. The analytical results not only provide useful insights about current state of skill needs in CS&IT industry but also provide practical implications to prospective job applicants, training agencies, and institutions of higher education & professional training.


Advanced Deep Learning Methods for Protein Structure Prediction and Design

arXiv.org Artificial Intelligence

After AlphaFold won the Nobel Prize, protein prediction with deep learning once again became a hot topic. We comprehensively explore advanced deep learning methods applied to protein structure prediction and design. It begins by examining recent innovations in prediction architectures, with detailed discussions on improvements such as diffusion based frameworks and novel pairwise attention modules. The text analyses key components including structure generation, evaluation metrics, multiple sequence alignment processing, and network architecture, thereby illustrating the current state of the art in computational protein modelling. Subsequent chapters focus on practical applications, presenting case studies that range from individual protein predictions to complex biomolecular interactions. Strategies for enhancing prediction accuracy and integrating deep learning techniques with experimental validation are thoroughly explored. The later sections review the industry landscape of protein design, highlighting the transformative role of artificial intelligence in biotechnology and discussing emerging market trends and future challenges. Supplementary appendices provide essential resources such as databases and open source tools, making this volume a valuable reference for researchers and students.