Industry
A Constraint-directed Local Search Approach to Nurse Rostering Problems
In this paper, we investigate the hybridization of constraint programming and local search techniques within a large neighbourhood search scheme for solving highly constrained nurse rostering problems. As identified by the research, a crucial part of the large neighbourhood search is the selection of the fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The success of the large neighbourhood search depends on the adequacy of this identified neighbourhood with regard to the problematic part of the solution assignment and the choice of the neighbourhood size. We investigate three strategies to choose the fragment of different sizes within the large neighbourhood search scheme. The first two strategies are tailored concerning the problem properties. The third strategy is more general, using the information of the cost from the soft constraint violations and their propagation as the indicator to choose the variables added into the fragment. The three strategies are analyzed and compared upon a benchmark nurse rostering problem. Promising results demonstrate the possibility of future work in the hybrid approach.
Sonet Network Design Problems
Pelleau, Marie, Van Hentenryck, Pascal, Truchet, Charlotte
This paper presents a new method and a constraint-based objective function to solve two problems related to the design of optical telecommunication networks, namely the Synchronous Optical Network Ring Assignment Problem (SRAP) and the Intra-ring Synchronous Optical Network Design Problem (IDP). These network topology problems can be represented as a graph partitioning with capacity constraints as shown in previous works. We present here a new objective function and a new local search algorithm to solve these problems. Experiments conducted in Comet allow us to compare our method to previous ones and show that we obtain better results.
Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results
Bijarbooneh, Farshid Hassani, Flener, Pierre, Pearson, Justin
Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance.
A multiagent urban traffic simulation. Part II: dealing with the extraordinary
Daudรฉ, Eric, Tranouez, Pierrick, Langlois, Patrice
In Probabilistic Risk Management, risk is characterized by two quantities: the magnitude (or severity) of the adverse consequences that can potentially result from the given activity or action, and by the likelihood of occurrence of the given adverse consequences. But a risk seldom exists in isolation: chain of consequences must be examined, as the outcome of one risk can increase the likelihood of other risks. Systemic theory must complement classic PRM. Indeed these chains are composed of many different elements, all of which may have a critical importance at many different levels. Furthermore, when urban catastrophes are envisioned, space and time constraints are key determinants of the workings and dynamics of these chains of catastrophes: models must include a correct spatial topology of the studied risk. Finally, literature insists on the importance small events can have on the risk on a greater scale: urban risks management models belong to self-organized criticality theory. We chose multiagent systems to incorporate this property in our model: the behavior of an agent can transform the dynamics of important groups of them.
BRAINSTORMING: Consensus Learning in Practice
We present here an introduction to Brainstorming approach, that was recently proposed as a consensus meta-learning technique, and used in several practical applications in bioinformatics and chemoinformatics. The consensus learning denotes heterogeneous theoretical classification method, where one trains an ensemble of machine learning algorithms using different types of input training data representations. In the second step all solutions are gathered and the consensus is build between them. Therefore no early solution, given even by a generally low performing algorithm, is not discarder until the late phase of prediction, when the final conclusion is drawn by comparing different machine learning models. This final phase, i.e. consensus learning, is trying to balance the generality of solution and the overall performance of trained model.
SparseCodePicking: feature extraction in mass spectrometry using sparse coding algorithms
Alexandrov, Theodore, Steinhorst, Klaus, Keszoecze, Oliver, Schiffler, Stefan
Mass spectrometry (MS) is an important technique for chemical profiling which calculates for a sample a high dimensional histogram-like spectrum. A crucial step of MS data processing is the peak picking which selects peaks containing information about molecules with high concentrations which are of interest in an MS investigation. We present a new procedure of the peak picking based on a sparse coding algorithm. Given a set of spectra of different classes, i.e. with different positions and heights of the peaks, this procedure can extract peaks by means of unsupervised learning. Instead of an $l_1$-regularization penalty term used in the original sparse coding algorithm we propose using an elastic-net penalty term for better regularization. The evaluation is done by means of simulation. We show that for a large region of parameters the proposed peak picking method based on the sparse coding features outperforms a mean spectrum-based method. Moreover, we demonstrate the procedure applying it to two real-life datasets.
Statistical Decision Making for Authentication and Intrusion Detection
Dimitrakakis, Christos, Mitrokotsa, Aikaterini
User authentication and intrusion detection differ from standard classification problems in that while we have data generated from legitimate users, impostor or intrusion data is scarce or non-existent. We review existing techniques for dealing with this problem and propose a novel alternative based on a principled statistical decision-making view point. We examine the technique on a toy problem and validate it on complex real-world data from an RFID based access control system. The results indicate that it can significantly outperform the classical world model approach. The method could be more generally useful in other decision-making scenarios where there is a lack of adversary data.
Pre-processing in AI based Prediction of QSARs
Patri, Om Prasad, Mishra, Amit Kumar
Machine learning, data mining and artificial intelligence (AI) based methods have been used to determine the relations between chemical structure and biological activity, called quantitative structure activity relationships (QSARs) for the compounds. Pre-processing of the dataset, which includes the mapping from a large number of molecular descriptors in the original high dimensional space to a small number of components in the lower dimensional space while retaining the features of the original data, is the first step in this process. A common practice is to use a mapping method for a dataset without prior analysis. This pre-analysis has been stressed in our work by applying it to two important classes of QSAR prediction problems: drug design (predicting anti-HIV-1 activity) and predictive toxicology (estimating hepatocarcinogenicity of chemicals). We apply one linear and two nonlinear mapping methods on each of the datasets. Based on this analysis, we conclude the nature of the inherent relationships between the elements of each dataset, and hence, the mapping method best suited for it. We also show that proper preprocessing can help us in choosing the right feature extraction tool as well as give an insight about the type of classifier pertinent for the given problem.
A path algorithm for the Fused Lasso Signal Approximator
The Lasso is a very well known penalized regression model, which adds an $L_{1}$ penalty with parameter $\lambda_{1}$ on the coefficients to the squared error loss function. The Fused Lasso extends this model by also putting an $L_{1}$ penalty with parameter $\lambda_{2}$ on the difference of neighboring coefficients, assuming there is a natural ordering. In this paper, we develop a fast path algorithm for solving the Fused Lasso Signal Approximator that computes the solutions for all values of $\lambda_1$ and $\lambda_2$. In the supplement, we also give an algorithm for the general Fused Lasso for the case with predictor matrix $\bX \in \mathds{R}^{n \times p}$ with $\text{rank}(\bX)=p$.
Dealing with incomplete agents' preferences and an uncertain agenda in group decision making via sequential majority voting
Pini, Maria, Rossi, Francesca, Venable, Brent, Walsh, Toby
We consider multi-agent systems where agents' preferences are aggregated via sequential majority voting: each decision is taken by performing a sequence of pairwise comparisons where each comparison is a weighted majority vote among the agents. Incompleteness in the agents' preferences is common in many real-life settings due to privacy issues or an ongoing elicitation process. In addition, there may be uncertainty about how the preferences are aggregated. For example, the agenda (a tree whose leaves are labelled with the decisions being compared) may not yet be known or fixed. We therefore study how to determine collectively optimal decisions (also called winners) when preferences may be incomplete, and when the agenda may be uncertain. We show that it is computationally easy to determine if a candidate decision always wins, or may win, whatever the agenda. On the other hand, it is computationally hard to know wheth er a candidate decision wins in at least one agenda for at least one completion of the agents' preferences. These results hold even if the agenda must be balanced so that each candidate decision faces the same number of majority votes. Such results are useful for reasoning about preference elicitation. They help understand the complexity of tasks such as determining if a decision can be taken collectively, as well as knowing if the winner can be manipulated by appropriately ordering the agenda.