Goto

Collaborating Authors

 Industry


Handwritten Digit Recognition with a Back-Propagation Network

Neural Information Processing Systems

We present an application of back-propagation networks to handwritten digit recognition. Minimal preprocessing of the data was required, but architecture of the network was highly constrained and specifically designed for the task. The input of the network consists of normalized images of isolated digits. The method has 1 % error rate and about a 9% reject rate on zipcode digits provided by the U.S. Postal Service. 1 INTRODUCTION The main point of this paper is to show that large back-propagation (BP) networks can be applied to real image-recognition problems without a large, complex preprocessing stage requiring detailed engineering. Unlike most previous work on the subject (Denker et al., 1989), the learning network is directly fed with images, rather than feature vectors, thus demonstrating the ability of BP networks to deal with large amounts of low level information. Previous work performed on simple digit images (Le Cun, 1989) showed that the architecture of the network strongly influences the network's generalization ability. Good generalization can only be obtained by designing a network architecture that contains a certain amount of a priori knowledge about the problem. The basic design principle is to minimize the number of free parameters that must be determined by the learning algorithm, without overly reducing the computational power of the network.


Sigma-Pi Learning: On Radial Basis Functions and Cortical Associative Learning

Neural Information Processing Systems

The goal in this work has been to identify the neuronal elements of the cortical column that are most likely to support the learning of nonlinear associative maps. We show that a particular style of network learning algorithm based on locally-tuned receptive fields maps naturally onto cortical hardware, and gives coherence to a variety of features of cortical anatomy, physiology, and biophysics whose relations to learning remain poorly understood.


Computer Simulation of Oscillatory Behavior in Cerebral Cortical Networks

Neural Information Processing Systems

It has been known for many years that specific regions of the working cerebral cortex display periodic variations in correlated cellular activity. While the olfactory system has been the focus of much of this work, similar behavior has recently been observed in primary visual cortex. We have developed models of both the olfactory and visual cortex which replicate the observed oscillatory properties of these networks. Using these models we have examined the dependence of oscillatory behavior on single cell properties and network architectures. We discuss the idea that the oscillatory events recorded from cerebral cortex may be intrinsic to the architecture of cerebral cortex as a whole, and that these rhythmic patterns may be important in coordinating neuronal activity during sensory processmg.


Performance of Connectionist Learning Algorithms on 2-D SIMD Processor Arrays

Neural Information Processing Systems

The mapping of the back-propagation and mean field theory learning algorithms onto a generic 2-D SIMD computer is described. This architecture proves to be very adequate for these applications since efficiencies close to the optimum can be attained. Expressions to find the learning rates are given and then particularized to the DAP array procesor.


Mechanisms for Neuromodulation of Biological Neural Networks

Neural Information Processing Systems

The pyloric Central Pattern Generator of the crustacean stomatogastric ganglion is a well-defined biological neural network. This 14-neuron network is modulated by many inputs. These inputs reconfigure the network to produce multiple output patterns by three simple mechanisms: 1) detennining which cells are active; 2) modulating the synaptic efficacy; 3) changing the intrinsic response properties of individual neurons. The importance of modifiable intrinsic response properties of neurons for network function and modulation is discussed.


Unsupervised Learning in Neurodynamics Using the Phase Velocity Field Approach

Neural Information Processing Systems

A new concept for unsupervised learning based upon examples introduced to the neural network is proposed. Each example is considered as an interpolation node of the velocity field in the phase space. The velocities at these nodes are selected such that all the streamlines converge to an attracting set imbedded in the subspace occupied by the cluster of examples. The synaptic interconnections are found from learning procedure providing selected field. The theory is illustrated by examples. This paper is devoted to development of a new concept for unsupervised learning based upon examples introduced to an artificial neural network.


The Effects of Circuit Integration on a Feature Map Vector Quantizer

Neural Information Processing Systems

The effects of parameter modifications imposed by hardware constraints on a self-organizing feature map algorithm were examined. Performance was measured by the error rate of a speech recognition system which included this algorithm as part of the front-end processing. System parameters which were varied included weight (connection strength) quantization, adap tation quantization, distance measures and circuit approximations which include device characteristics and process variability. Experiments using the TI isolated word database for 16 speakers demonstrated degradation in performance when weight quantization fell below 8 bits. The competitive nature of the algorithm rela..xes constraints on uniformity and linearity which makes it an excellent candidate for a fully analog circuit implementation. Prototype circuits have been fabricated and characterized following the constraints established through the simulation efforts. 1 Introduction The self-organizing feature map algorithm developed by Kohonen [Kohonen, 1988] readily lends itself to the task of vector quantization for use in such areas as speech recognition.


Neural Implementation of Motivated Behavior: Feeding in an Artificial Insect

Neural Information Processing Systems

Most complex behaviors appear to be governed by internal motivational states or drives that modify an animal's responses to its environment. It is therefore of considerable interest to understand the neural basis of these motivational states. Drawing upon work on the neural basis of feeding in the marine mollusc Aplysia, we have developed a heterogeneous artificial neural network for controlling the feeding behavior of a simulated insect. We demonstrate that feeding in this artificial insect shares many characteristics with the motivated behavior of natural animals. 1 INTRODUCTION While an animal's external environment certainly plays an extremely important role in shaping its actions, the behavior of even simpler animals is by no means solely reactive. The response of an animal to food, for example, cannot be explained only in terms of the physical stimuli involved. On two different occasions, the very same animal may behave in completely different ways when presented with seemingly identical pieces of food (e.g.


Learning in Higher-Order "Artificial Dendritic Trees

Neural Information Processing Systems

The computational territory between the linearly summing McCulloch-Pitts neuron and the nonlinear differential equations of Hodgkin & Huxley is relatively sparsely populated. Connectionists use variants of the former and computational neuroscientists struggle with the exploding parameter spaces provided by the latter. However, evidence from biophysical simulations suggests that the voltage transfer properties of synapses, spines and dendritic membranes involve many detailed nonlinear interactions, not just a squashing function at the cell body. Real neurons may indeed be higher-order nets. For the computationally-minded, higher order interactions means, first of all, quadratic terms. This contribution presents a simple learning principle for a binary tree with a logistic/quadratic transfer function at each node. These functions, though highly nested, are shown to be capable of changing their shape in concert. The resulting tree structure receives inputs at its leaves, and outputs an estimate of the probability that the input pattern is a member of one of two classes at the top.


Real-Time Computer Vision and Robotics Using Analog VLSI Circuits

Neural Information Processing Systems

The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate vision algorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossings using two resistive grids with different spaceconstants. To demonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.