Not enough data to create a plot.
Try a different view from the menu above.
Industry
Discrete Affine Wavelet Transforms For Anaylsis And Synthesis Of Feedfoward Neural Networks
Pati, Y. C., Krishnaprasad, P. S.
In this paper we show that discrete affine wavelet transforms can provide a tool for the analysis and synthesis of standard feedforward neural networks. It is shown that wavelet frames for L2(IR) can be constructed based upon sigmoids. The spatia-spectral localization property of wavelets can be exploited in defining the topology and determining the weights of a feedforward network. Training a network constructed using the synthesis procedure described here involves minimization of a convex cost functional and therefore avoids pitfalls inherent in standard backpropagation algorithms. Extension of these methods to L2(IRN) is also discussed.
Relaxation Networks for Large Supervised Learning Problems
Alspector, Joshua, Allen, Robert B., Jayakumar, Anthony, Zeppenfeld, Torsten, Meir, Ronny
Feedback connections are required so that the teacher signal on the output neurons can modify weights during supervised learning. Relaxation methods are needed for learning static patterns with full-time feedback connections. Feedback network learning techniques have not achieved wide popularity because of the still greater computational efficiency of back-propagation. We show by simulation that relaxation networks of the kind we are implementing in VLSI are capable of learning large problems just like back-propagation networks. A microchip incorporates deterministic mean-field theory learning as well as stochastic Boltzmann learning. A multiple-chip electronic system implementing these networks will make high-speed parallel learning in them feasible in the future.
An Analog VLSI Splining Network
Schwartz, Daniel B., Samalam, Vijay K.
We have produced a VLSI circuit capable of learning to approximate arbitrary smooth of a single variable using a technique closely related to splines. The circuit effectively has 512 knots space on a uniform grid and has full support for learning. The circuit also can be used to approximate multi-variable functions as sum of splines. An interesting, and as of yet, nearly untapped set of applications for VLSI implementation of neural network learning systems can be found in adaptive control and nonlinear signal processing. In most such applications, the learning task consists of approximating a real function of a small number of continuous variables from discrete data points.
On the Circuit Complexity of Neural Networks
Roychowdhury, V. P., Siu, K. Y., Orlitsky, A., Kailath, T.
Viewing n-variable boolean functions as vectors in'R'2", we invoke tools from linear algebra and linear programming to derive new results on the realizability of boolean functions using threshold gat.es. Using this approach, one can obtain: (1) upper-bounds on the number of spurious memories in HopfielJ networks, and on the number of functions implementable by a depth-d threshold circuit; (2) a lower bound on the number of ort.hogonal input.
A B-P ANN Commodity Trader
Joseph E. Collard Martingale Research Corporation 100 Allentown Pkwy., Suite 211 Allen, Texas 75002 Abstract An Artificial Neural Network (ANN) is trained to recognize a buy/sell (long/short) pattern for a particular commodity future contract. The Back Propagation of errors algorithm was used to encode the relationship between the Long/Short desired output and 18 fundamental variables plus 6 (or 18) technical variables into the ANN. Trained on one year of past data the ANN is able to predict long/short market positions for 9 months in the future that would have made $10,301 profit on an investment of less than $1000. 1 INTRODUCTION An Artificial Neural Network (ANN) is trained to recognize a long/short pattern for a particular commodity future contract. The Back-Propagation of errors algorithm was used to encode the relationship between the Long/Short desired output and 18 fundamental variables plus 6 (or 18) technical variables into the ANN. 2 NETWORK ARCHITECTURE The ANNs used were simple, feed forward, single hidden layer networks with no input units, N hidden units and one output unit. N varied from six (6) through sixteen (16) hidden units.
A four neuron circuit accounts for change sensitive inhibition in salamander retina
Teeters, Jeffrey L., Eeckman, Frank H., Werblin, Frank S.
In salamander retina, the response of On-Off ganglion cells to a central flash is reduced by movement in the receptive field surround. Through computer simulation of a 2-D model which takes into account their anatomical and physiological properties, we show that interactions between four neuron types (two bipolar and two amacrine) may be responsible for the generation and lateral conductance of this change sensitive inhibition. The model shows that the four neuron circuit can account for previously observed movement sensitive reductions in ganglion cell sensitivity and allows visualization and prediction of the spatiotemporal pattern of activity in change sensitive retinal cells.
A Model of Distributed Sensorimotor Control in the Cockroach Escape Turn
Beer, R.D., Kacmarcik, G. J., Ritzmann, R.E., Chiel, H.J.
In response to a puff of wind, the American cockroach turns away and runs. The circuit underlying the initial turn of this escape response consists of three populations of individually identifiable nerve cells and appears to employ distributed representations in its operation. We have reconstructed several neuronal and behavioral properties of this system using simplified neural network models and the backpropagation learning algorithm constrained by known structural characteristics of the circuitry. In order to test and refine the model, we have also compared the model's responses to various lesions with the insect's responses to similar lesions.
Further Studies of a Model for the Development and Regeneration of Eye-Brain Maps
Cowan, Jack D., Friedman, A. E.
We describe a computational model of the development and regeneration ofspecific eye-brain circuits. The model comprises a self-organizing map-forming network which uses local Hebb rules, constrained by (genetically determined) molecular markers. Various simulations of the development and regeneration of eye-brain maps in fish and frogs are described, in particular successful simulations of experiments by Schmidt-Cicerone-Easter; Meyer; and Yoon. 1 INTRODUCTION In a previous paper published in last years proceedings (Cowan & Friedman 1990) we outlined a new computational model for the development and regeneration of eye-brain maps. We indicated that such a model can simulate the results of a number of the more complicated surgical manipulations carried out on the visual pathways of goldfish and frogs. In this paper we describe in more detail some of these experiments, and our simulations of them.