Not enough data to create a plot.
Try a different view from the menu above.
Industry
Analog Implementation of Shunting Neural Networks
Nabet, Bahram, Darling, Robert B., Pinter, Robert B.
The first case shows recurrent activity, while the second case is non-recurrent or feed forward. The polarity of these terms signify excitatory or inhibitory interactions. Shunting network equations can be derived from various sources such as the passive membrane equation with synaptic interaction (Grossberg 1973, Pinter 1983), models of dendritic interaction (RaIl 1977), or experiments on motoneurons (Ellias and Grossberg 1975).
Heterogeneous Neural Networks for Adaptive Behavior in Dynamic Environments
Beer, Randall D., Chiel, Hillel J., Sterling, Leon S.
This heterogeneity is crucial to the flexible generation of behavior which is essential for survival in a complex, dynamic environment. It may also provide powerful insights into the design of artificial neural networks. In this paper, we describe a heterogeneous neural network for controlling the wa1king of a simulated insect. This controller is inspired by the neuroethological and neurobiological literature on insect locomotion. It exhibits a variety of statically stable gaits at different speeds simply by varying the tonic activity of a single cell. It can also adapt to perturbations as a natural consequence of its design. INTRODUCTION Even very simple animals exhibit a dazzling variety of complex behaviors which they continuously adapt to the changing circumstances of their environment. Nervous systems evolved in order to generate appropriate behavior in dynamic, uncertain situations and thus insure the survival of the organisms containing them.
Performance of Synthetic Neural Network Classification of Noisy Radar Signals
Ahalt, Stanley C., Garber, F. D., Jouny, I., Krishnamurthy, Ashok K.
This study evaluates the performance of the multilayer-perceptron and the frequency-sensitive competitive learning network in identifying five commercial aircraft from radar backscatter measurements. The performance of the neural network classifiers is compared with that of the nearest-neighbor and maximum-likelihood classifiers. Our results indicate that for this problem, the neural network classifiers are relatively insensitive to changes in the network topology, and to the noise level in the training data. While, for this problem, the traditional algorithms outperform these simple neural classifiers, we feel that neural networks show the potential for improved performance.
Efficient Parallel Learning Algorithms for Neural Networks
Kramer, Alan H., Sangiovanni-Vincentelli, Alberto
Parallelizable optimization techniques are applied to the problem of learning in feedforward neural networks. In addition to having superior convergence properties, optimization techniques such as the Polak Ribiere method are also significantly more efficient than the Backpropagation algorithm. These results are based on experiments performed on small boolean learning problems and the noisy real-valued learning problem of handwritten character recognition. 1 INTRODUCTION The problem of learning in feedforward neural networks has received a great deal of attention recently because of the ability of these networks to represent seemingly complex mappings in an efficient parallel architecture. This learning problem can be characterized as an optimization problem, but it is unique in several respects. Function evaluation is very expensive. However, because the underlying network is parallel in nature, this evaluation is easily parallelizable.
A Low-Power CMOS Circuit Which Emulates Temporal Electrical Properties of Neurons
Meador, Jack L., Cole, Clint S.
Popular neuron models are based upon some statistical measure of known natural behavior. Whether that measure is expressed in terms of average firing rate or a firing probability, the instantaneous neuron activation is only represented in an abstract sense. Artificial electronic neurons derived from these models represent this excitation level as a binary code or a continuous voltage at the output of a summing amplifier. While such models have been shown to perform well for many applications, and form an integral part of much current work, they only partially emulate the manner in which natural neural networks operate. They ignore, for example, differences in relative arrival times of neighboring action potentials -- an important characteristic known to exist in natural auditory and visual networks {Sejnowski, 1986}. They are also less adaptable to fme-grained, neuron-centered learning, like the post-tetanic facilitation observed in natural neurons. We are investigating the implementation and application of neuron circuits which better approximate natural neuron function.
An Optimality Principle for Unsupervised Learning
We propose an optimality principle for training an unsupervised feedforward neural network based upon maximal ability to reconstruct the input data from the network outputs. We describe an algorithm which can be used to train either linear or nonlinear networks with certain types of nonlinearity. Examples of applications to the problems of image coding, feature detection, and analysis of randomdot stereograms are presented.
Neural Architecture
While we are waiting for the ultimate biophysics of cell membranes and synapses to be completed, we may speculate on the shapes of neurons and on the patterns of their connections. Much of this will be significant whatever the outcome of future physiology. Take as an example the isotropy, anisotropy and periodicity of different kinds of neural networks. The very existence of these different types in different parts of the brain (or in different brains) defeats explanation in terms of embryology; the mechanisms of development are able to make one kind of network or another. The reasons for the difference must be in the functions they perform.