Not enough data to create a plot.
Try a different view from the menu above.
Industry
A Systematic Study of the Input/Output Properties of a 2 Compartment Model Neuron With Active Membranes
The input/output properties of a 2 compartment model neuron are systematically explored. Taken from the work of MacGregor (MacGregor, 1987), the model neuron compartments contain several active conductances, including a potassium conductance in the dendritic compartment driven by the accumulation of intradendritic calcium. Dynamics of the conductances and potentials are governed by a set of coupled first order differential equations which are integrated numerically. There are a set of 17 internal parameters to this model, specificying conductance rate constants, time constants, thresholds, etc. To study parameter sensitivity, a set of trials were run in which the input driving the neuron is kept fixed while each internal parameter is varied with all others left fixed. To study the input/output relation, the input to the dendrite (a square wave) was varied (in frequency and magnitude) while all internal parameters of the system were left flXed, and the resulting output firing rate and bursting rate was counted. The input/output relation of the model neuron studied turns out to be much more sensitive to modulation of certain dendritic potassium current parameters than to plasticity of synapse efficacy per se (the amount of current influx due to synapse activation). This would in turn suggest, as has been recently observed experimentally, that the potassium current may be as or more important a focus of neural plasticity than synaptic efficacy.
Neuronal Group Selection Theory: A Grounding in Robotics
In this paper, we discuss a current attempt at applying the organizational principle Edelman calls Neuronal Group Selection to the control of a real, two-link robotic manipulator. We begin by motivating the need for an alternative to the position-control paradigm of classical robotics, and suggest that a possible avenue is to look at the primitive animal limb'neurologically ballistic' control mode. We have been considering a selectionist approach to coordinating a simple perception-action task. 1 MOTIVATION The majority of industrial robots in the world are mechanical manipUlators - often armlike devices consisting of some number of rigid links with actuators mounted where the links join that move adjacent links relative to each other, rotationally or translation ally. At the joints there are typically also sensors measuring the relative position of adjacent links, and it is in terms of position that manipulators are generally controlled (a desired motion is specified as a desired position of the end effector, from which can be derived the necessary positions of the links comprising the manipulator). Position control dominates largely for historical reasons, rooted in bang-bang control: manipulators bumped between mechanical stops placed so as to enforce a desired trajectory for the end effector.
The Computation of Sound Source Elevation in the Barn Owl
Spence, Clay D., Pearson, John C.
The midbrain of the barn owl contains a map-like representation of sound source direction which is used to precisely orient the head toward targets of interest. Elevation is computed from the interaural difference in sound level. We present models and computer simulations of two stages of level difference processing which qualitatively agree with known anatomy and physiology, and make several striking predictions. 1 INTRODUCTION
An Analog VLSI Model of Adaptation in the Vestibulo-Ocular Reflex
DeWeerth, Stephen P., Mead, Carver
The vestibulo-ocular reflex (VOR) is the primary mechanism that controls the compensatory eye movements that stabilize retinal images during rapid head motion. The primary pathways of this system are feed-forward, with inputs from the semicircular canals and outputs to the oculomotor system. Since visual feedback is not used directly in the VOR computation, the system must exploit motor learning to perform correctly. Lisberger(1988) has proposed a model for adapting the VOR gain using image-slip information from the retina. We have designed and tested analog very largescale integrated (VLSI) circuitry that implements a simplified version of Lisberger's adaptive VOR model.
Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications
Atlas, Les E., Cole, Ronald A., Connor, Jerome T., El-Sharkawi, Mohamed A., II, Robert J. Marks, Muthusamy, Yeshwant K., Barnard, Etienne
In this paper we compare regression and classification systems. A regression system can generate an output f for an input X, where both X and f are continuous and, perhaps, multidimensional. A classification system can generate an output class, C, for an input X, where X is continuous and multidimensional and C is a member of a finite alphabet. The statistical technique of Classification And Regression Trees (CART) was developed during the years 1973 (Meisel and Michalpoulos) through 1984 (Breiman el al).
Artificial Intelligence and Molecular Biology
Molecular biology is emerging as an important domain for artificial intelligence research. The advantages of biology for design and testing of AI systems include large amounts of available online data, significant (but incomplete) background knowledge, a wide variety of problems commensurate with AI technologies, clear standards of success, cooperative domain experts, non-military basic research support and percieved potential for practical (and profitable) applications. These considerations have motivated a growing group of researchers to pursue both basic and applied AI work in the domain. More than seventy-five researchers working on these problems gathered at Stanford for a AAAI sponsored symposium on the topic. This article provides a description of much of the work presented at the meeting, and fills in the basic biology background necessary to place it in context.
AI-Based Schedulers in Manufacturing Practice: Report of a Panel Discussion
Kempf, Karl, Russell, Bruce, Sidhu, Sanjiv, Barrett, Stu
There is a great disparity between the number of papers which have been published about AI-based manufacturing scheduling tools and the number of systems which are in daily use by manufacturing engineers. It is argued that this is not a reflection of inadequate AI technology, but is rather indicative of lack of a systems perspective by AI practitioners and their manufacturing customers. Case studies to support this perspective are presented by Carnegie Group as a builder of scheduling systems for its customers, by Texas Instruments and Intel Corporation as builders of schedulers for their own use, and by Intellection as a consulting house specializing in scheduling problems.
Issues in the Design of AI-Based Schedulers: A Workshop Report
Kempf, Karl, Pape, Claude Le, Smith, Stephen F., Fox, Barry R.
Based on the experience in manufacturing production scheduling problems which the AI community has amassed over the last ten years, a workshop was held to provide a forum for discussion of the issues encountered in the design of AI-based scheduling systems. Several topics were addressed including : the relative virtues of expert system, deep method, and interactive approaches, the balance between predictive and reactive components in a scheduling system, the maintenance of convenient scheduling descriptions, the application of the ideas of chaos theory to scheduling, the state of the art in schedulers which learn, and the practicality and desirability of a set of benchmark scheduling problems. This article expands on these issues, abstracts the papers which were presented, and summarizes the lengthy discussions that took place.
Theory and Application of Minimal-Length Encoding: 1990 AAAI Spring Symposium Report
This symposium was very successful and was perhaps the most unusual of the spring symposia this year. It brought together for the first time distinguished researchers from many diverse disciplines to discuss and share results on a particular topic of mutual interest. The disciplines included machine learning, computational learning theory, computer vision, pattern recognition, perceptual psychology, statistics, information theory, theoretical computer science, and molecular biology, with the involvement of the latter group having lead to a joint session with the AI and Molecular Biology symposium.