Not enough data to create a plot.
Try a different view from the menu above.
Media
Grounding the Lexical Semantics of Verbs in Visual Perception using Force Dynamics and Event Logic
This paper presents an implemented system for recognizing the occurrence of events described by simple spatial-motion verbs in short image sequences. The semantics of these verbs is specified with event-logic expressions that describe changes in the state of force-dynamic relations between the participants of the event. An efficient finite representation is introduced for the infinite sets of intervals that occur when describing liquid and semi-liquid events. Additionally, an efficient procedure using this representation is presented for inferring occurrences of compound events, described with event-logic expressions, from occurrences of primitive events. Using force dynamics and event logic to specify the lexical semantics of events allows the system to be more robust than prior systems based on motion profile.
Personalized Electronic Program Guides for Digital TV
Although today's world offers us unprecedented access to greater and greater amounts of electronic information, we are faced with significant problems when it comes to finding the right information at the right time -- the essence of the information-overload problem. One of the proposed solutions to this problem is to develop technologies for automatically learning about the implicit and explicit preferences of individual users to customize and personalize the search for relevant information. In this article, we describe the development of the personalized television listings system (PTV),1 which tackles the information-overload problem associated with modern TV listings data by providing an Internet-based personalized TV listings service so that each registered user receives a daily TV guide that has been specially compiled to suit his/her particular viewing preferences.
The AIPS-98 Planning Competition
Long, Derek, Kautz, Henry, Selman, Bart, Bonet, Blai, Geffner, Hector, Koehler, Jana, Brenner, Michael, Hoffmann, Joerg, Rittinger, Frank, Anderson, Corin R., Weld, Daniel S., Smith, David E., Fox, Maria, Long, Derek
In 1998, the international planning community was invited to take part in the first planning competition, hosted by the Artificial Intelligence Planning Systems Conference, to provide a new impetus for empirical evaluation and direct comparison of automatic domain-independent planning systems. This article describes the systems that competed in the event, examines the results, and considers some of the implications for the future of the field.
MELONET I: Neural Nets for Inventing Baroque-Style Chorale Variations
The investigation of neural information structures in music is a rather new, exciting research area bringing together different disciplines such as computer science, mathematics, musicology and cognitive science. One of its aims is to find out what determines the personal style of a composer. It has been shown that neural network models - better than other AI approaches - are able to learn and reproduce styledependent features from given examples, e.g., chorale harmonizations in the style of Johann Sebastian Bach (Hild et al., 1992). However when dealing with melodic sequences, e.g., folksong style melodies, all of these models have considerable difficulties to learn even simple structures. The reason is that they are unable to capture high-order structure such as harmonies, motifs and phrases simultaneously occurring at multiple time scales.
A Revolution: Belief Propagation in Graphs with Cycles
Frey, Brendan J., MacKay, David J. C.
Until recently, artificial intelligence researchers have frowned upon the application of probability propagation in Bayesian belief networks that have cycles. The probability propagation algorithm is only exact in networks that are cycle-free. However, it has recently been discovered that the two best error-correcting decoding algorithms are actually performing probability propagation in belief networks with cycles. 1 Communicating over a noisy channel Our increasingly wired world demands efficient methods for communicating bits of information over physical channels that introduce errors. Examples of real-world channels include twisted-pair telephone wires, shielded cable-TV wire, fiberoptic cable, deep-space radio, terrestrial radio, and indoor radio. Engineers attempt to correct the errors introduced by the noise in these channels through the use of channel coding which adds protection to the information source, so that some channel errors can be corrected.
Bach in a Box - Real-Time Harmony
Spangler, Randall R., Goodman, Rodney M., Hawkins, Jim
The learning and inferencing algorithms presented here speak an extended form of the classical figured bass representation common in Bach's time. Paired with a melody, figured bass provides a sufficient amount of information to reconstruct the harmonic content of a piece of music. Figured bass has several characteristics which make it well-disposed to learning rules. It is a symbolic format which uses a relatively small alphabet of symbols. It is also hierarchical - it specifies first the chord function that is to be played at the current note/timestep, then the scale step to be played by the bass voice, then additional information as needed to specify the alto and tenor scale steps. This allows our algorithm to fire sets of rules sequentially, to first determine the chord function which should be associated with a new melody note, and then to use that chord function as an input attribute to subsequent rulebases which determine the bass, alto, and tenor scale steps. In this way we can build up the final chord from simpler pieces, each governed by a specialized rulebase.
A Revolution: Belief Propagation in Graphs with Cycles
Frey, Brendan J., MacKay, David J. C.
Department of Physics, Cavendish Laboratory Cambridge University Abstract Until recently, artificial intelligence researchers have frowned upon the application of probability propagation in Bayesian belief networks thathave cycles. The probability propagation algorithm is only exact in networks that are cycle-free. Examples of real-world channels include twisted-pair telephone wires, shielded cable-TV wire, fiberoptic cable, deep-space radio, terrestrial radio, and indoor radio. Engineers attempt to correct the errors introduced by the noise in these channels through the use of channel coding which adds protection to the information source, so that some channel errors can be corrected. A popular model of a physical channel is shown in Figure 1.
MELONET I: Neural Nets for Inventing Baroque-Style Chorale Variations
The investigation of neural information structures in music is a rather new, exciting research area bringing together different disciplines such as computer science, mathematics, musicology and cognitive science. One of its aims is to find out what determines the personal style of a composer. It has been shown that neural network models - better than other AI approaches - are able to learn and reproduce styledependent features from given examples, e.g., chorale harmonizations in the style of Johann Sebastian Bach (Hild et al., 1992). However when dealing with melodic sequences, e.g., folksong style melodies, all of these models have considerable difficulties to learn even simple structures. The reason is that they are unable to capture high-order structure such as harmonies, motifs and phrases simultaneously occurring at multiple time scales.