Goto

Collaborating Authors

 Information Technology


Taming the Long Tail in Human Mobility Prediction

Neural Information Processing Systems

With the popularity of location-based services, human mobility prediction plays a key role in enhancing personalized navigation, optimizing recommendation systems, and facilitating urban mobility and planning. This involves predicting a user's next POI (point-of-interest) visit using their past visit history. However, the uneven distribution of visitations over time and space, namely the long-tail problem in spatial distribution, makes it difficult for AI models to predict those POIs that are less visited by humans. In light of this issue, we propose the Long-Tail Adjusted Next POI Prediction (LoTNext) framework for mobility prediction, combining a Long-Tailed Graph Adjustment module to reduce the impact of the long-tailed nodes in the user-POI interaction graph and a novel Long-Tailed Loss Adjustment module to adjust loss by logit score and sample weight adjustment strategy. Also, we employ the auxiliary prediction task to enhance generalization and accuracy. Our experiments with two real-world trajectory datasets demonstrate that LoTNext significantly surpasses existing state-of-the-art works.


WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models

Neural Information Processing Systems

Large language models (LLMs) need knowledge updates to meet the ever-growing world facts and correct the hallucinated responses, facilitating the methods of lifelong model editing. Where the updated knowledge resides in memories is a fundamental question for model editing. In this paper, we find that editing either long-term memory (direct model parameters) or working memory (nonparametric knowledge of neural network activations/representations by retrieval) will result in an impossible triangle--reliability, generalization, and locality can not be realized together in the lifelong editing settings. For long-term memory, directly editing the parameters will cause conflicts with irrelevant pretrained knowledge or previous edits (poor reliability and locality). For working memory, retrieval-based activations can hardly make the model understand the edits and generalize (poor generalization). Therefore, we propose WISE to bridge the gap between memories.


Dynamic Service Fee Pricing under Strategic Behavior: Actions as Instruments and Phase Transition Rui Ai

Neural Information Processing Systems

We study a dynamic pricing problem for third-party platform service fees under strategic, far-sighted customers. In each time period, the platform sets a service fee based on historical data, observes the resulting transaction quantities, and collects revenue. The platform also monitors equilibrium prices influenced by both demand and supply. The objective is to maximize total revenue over a time horizon T. Our problem incorporates three practical challenges: (a) initially, the platform lacks knowledge of the demand side beforehand, necessitating a balance between exploring (learning the demand curve) and exploiting (maximizing revenue) simultaneously; (b) since only equilibrium prices and quantities are observable, traditional Ordinary Least Squares (OLS) estimators would be biased and inconsistent; (c) buyers are rational and strategic, seeking to maximize their consumer surplus and potentially misrepresenting their preferences. To address these challenges, we propose novel algorithmic solutions. Our approach involves: (i) a carefully designed active randomness injection to balance exploration and exploitation effectively; (ii) using non-i.i.d.


Generalization Bounds via Conditional f-Information

Neural Information Processing Systems

In this work, we introduce novel information-theoretic generalization bounds using the conditional f-information framework, an extension of the traditional conditional mutual information (MI) framework. We provide a generic approach to derive generalization bounds via f-information in the supersample setting, applicable to both bounded and unbounded loss functions. Unlike previous MIbased bounds, our proof strategy does not rely on upper bounding the cumulantgenerating function (CGF) in the variational formula of MI. Instead, we set the CGF or its upper bound to zero by carefully selecting the measurable function invoked in the variational formula. Although some of our techniques are partially inspired by recent advances in the coin-betting framework (e.g., Jang et al. (2023)), our results are independent of any previous findings from regret guarantees of online gambling algorithms. Additionally, our newly derived MI-based bound recovers many previous results and improves our understanding of their potential limitations. Finally, we empirically compare various f-information measures for generalization, demonstrating the improvement of our new bounds over the previous bounds.


Dรฉjร  vu Memorization in Vision-Language Models

Neural Information Processing Systems

Vision-Language Models (VLMs) have emerged as the state-of-the-art representation learning solution, with myriads of downstream applications such as image classification, retrieval and generation. A natural question is whether these models memorize their training data, which also has implications for generalization. We propose a new method for measuring memorization in VLMs, which we call dรฉjร  vu memorization. For VLMs trained on image-caption pairs, we show that the model indeed retains information about individual objects in the training images beyond what can be inferred from correlations or the image caption. We evaluate dรฉjร  vu memorization at both sample and population level, and show that it is significant for OpenCLIP trained on as many as 50M image-caption pairs. Finally, we show that text randomization considerably mitigates memorization while only moderately impacting the model's downstream task performance.


HYDRA-FL: Hybrid Knowledge Distillation for Robust and Accurate Federated Learning

Neural Information Processing Systems

Data heterogeneity among Federated Learning (FL) users poses a significant challenge, resulting in reduced global model performance. The community has designed various techniques to tackle this issue, among which Knowledge Distillation (KD)-based techniques are common. While these techniques effectively improve performance under high heterogeneity, they inadvertently cause higher accuracy degradation under model poisoning attacks (known as attack amplification). This paper presents a case study to reveal this critical vulnerability in KD-based FL systems. We show why KD causes this issue through empirical evidence and use it as motivation to design a hybrid distillation technique. We introduce a novel algorithm, Hybrid Knowledge Distillation for Robust and Accurate FL (HYDRA-FL), which reduces the impact of attacks in attack scenarios by offloading some of the KD loss to a shallow layer via an auxiliary classifier. We model HYDRA-FL as a generic framework and adapt it to two KD-based FL algorithms, FedNTD and MOON. Using these two as case studies, we demonstrate that our technique outperforms baselines in attack settings while maintaining comparable performance in benign settings.


TFGDA: Exploring Topology and Feature Alignment in Semi-supervised Graph Domain Adaptation through Robust Clustering

Neural Information Processing Systems

Semi-supervised graph domain adaptation, as a branch of graph transfer learning, aims to annotate unlabeled target graph nodes by utilizing transferable knowledge learned from a label-scarce source graph. However, most existing studies primarily concentrate on aligning feature distributions directly to extract domain-invariant features, while ignoring the utilization of the intrinsic structure information in graphs. Inspired by the significance of data structure information in enhancing models' generalization performance, this paper aims to investigate how to leverage the structure information to assist graph transfer learning. To this end, we propose an innovative framework called TFGDA. Specially, TFGDA employs a structure alignment strategy named STSA to encode graphs' topological structure information into the latent space, greatly facilitating the learning of transferable features. To achieve a stable alignment of feature distributions, we also introduce a SDA strategy to mitigate domain discrepancy on the sphere. Moreover, to address the overfitting issue caused by label scarcity, a simple but effective RNC strategy is devised to guide the discriminative clustering of unlabeled nodes. Experiments on various benchmarks demonstrate the superiority of TFGDA over SOTA methods.


DarkSAM: Fooling Segment Anything Model to Segment Nothing

Neural Information Processing Systems

Segment Anything Model (SAM) has recently gained much attention for its outstanding generalization to unseen data and tasks. Despite its promising prospect, the vulnerabilities of SAM, especially to universal adversarial perturbation (UAP) have not been thoroughly investigated yet. In this paper, we propose Dark-SAM, the first prompt-free universal attack framework against SAM, including a semantic decoupling-based spatial attack and a texture distortion-based frequency attack. We first divide the output of SAM into foreground and background. Then, we design a shadow target strategy to obtain the semantic blueprint of the image as the attack target.


4d2aa4c034745f558bfea34643c8d6a6-Paper-Conference.pdf

Neural Information Processing Systems

Federated Learning (FL) is a distributed machine learning framework that trains accurate global models while preserving clients' privacy-sensitive data. However, most FL approaches assume that clients possess labeled data, which is often not the case in practice. Federated Semi-Supervised Learning (FSSL) addresses this label deficiency problem, targeting situations where only the server has a small amount of labeled data while clients do not. However, a significant performance gap exists between Centralized Semi-Supervised Learning (SSL) and FSSL. This gap arises from confirmation bias, which is more pronounced in FSSL due to multiple local training epochs and the separation of labeled and unlabeled data.


ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution Haoran Ye

Neural Information Processing Systems

The omnipresence of NP-hard combinatorial optimization problems (COPs) compels domain experts to engage in trial-and-error heuristic design. The long-standing endeavor of design automation has gained new momentum with the rise of large language models (LLMs). This paper introduces Language Hyper-Heuristics (LHHs), an emerging variant of Hyper-Heuristics that leverages LLMs for heuristic generation, featuring minimal manual intervention and open-ended heuristic spaces. To empower LHHs, we present Reflective Evolution (ReEvo), a novel integration of evolutionary search for efficiently exploring the heuristic space, and LLM reflections to provide verbal gradients within the space.