Information Technology
Using consumer behavior data to reduce energy consumption in smart homes
Schweizer, Daniel, Zehnder, Michael, Wache, Holger, Witschel, Hans-Friedrich, Zanatta, Danilo, Rodriguez, Miguel
This paper discusses how usage patterns and preferences of inhabitants can be learned efficiently to allow smart homes to autonomously achieve energy savings. We propose a frequent sequential pattern mining algorithm suitable for real-life smart home event data. The performance of the proposed algorithm is compared to existing algorithms regarding completeness/correctness of the results, run times as well as memory consumption and elaborates on the shortcomings of the different solutions. We also present a recommender system based on the developed algorithm that provides recommendations to the users to reduce their energy consumption. The recommender system was deployed to a set of test homes. The test participants rated the impact of the recommendations on their comfort. We used this feedback to adjust the system parameters and make it more accurate during a second test phase.
CiteSeerX: AI in a Digital Library Search Engine
Wu, Jian (Pennsylvania State University) | Williams, Kyle Mark (Pennsylvania State University) | Chen, Hung-Hsuan (Industrial Technology Research Institute) | Khabsa, Madian (Pennsylvania State University) | Caragea, Cornelia (University of North Texas) | Tuarob, Suppawong (Pennsylvania State University) | Ororbia, Alexander G. (Pennsylvania State University) | Jordan, Douglas (Pennsylvania State University) | Mitra, Prasenjit (Pennsylvania State University) | Giles, C. Lee (Pennsylvania State University)
CiteSeerX is a digital library search engine providing access to more than five million scholarly documents with nearly a million users and millions of hits per day. These AI technologies have been developed by CiteSeerX group members over the past 5โ6 years. We also present AI technologies implemented in table and algorithm search, which are special search modes in CiteSeerX. While it is challenging to rebuild a system like CiteSeerX from scratch, many of these AI technologies are transferable to other digital libraries and/or search engines.
Reports on the 2014 AAAI Fall Symposium Series
Cohen, Adam B. (Independent Consultant) | Chernova, Sonia (Worcester Polytechnic Institute) | Giordano, James (Georgetown University Medical Center) | Guerin, Frank (University of Aberdeen) | Hauser, Kris (Duke University) | Indurkhya, Bipin (AGH University of Science and Technology) | Leonetti, Matteo (University of Texas at Austin) | Medsker, Larry (Siena College) | Michalowski, Martin (Adventium Labs) | Sonntag, Daniel (German Research Center for Artificial Intelligence) | Stojanov, Georgi (American University of Paris) | Tecuci, Dan G. (IBM Watson, Austin) | Thomaz, Andrea (Georgia Institute of Technology) | Veale, Tony (University College Dublin) | Waltinger, Ulli (Siemens Corporate Technology)
The AAAI 2014 Fall Symposium Series was held Thursday through Saturday, November 13โ15, at the Westin Arlington Gateway in Arlington, Virginia adjacent to Washington, DC. The titles of the seven symposia were Artificial Intelligence for Human-Robot Interaction, Energy Market Prediction, Expanding the Boundaries of Health Informatics Using AI, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, Modeling Changing Perspectives: Reconceptualizing Sensorimotor Experiences, Natural Language Access to Big Data, and The Nature of Humans and Machines: A Multidisciplinary Discourse. The highlights of each symposium are presented in this report.
Deploying CommunityCommands: A Software Command Recommender System Case Study
Li, Wei (Autodesk Research) | Matejka, Justin (Autodesk Research) | Grossmann, Tovi (Autodesk Research) | Fitzmaurice, George (Autodesk Research)
This project continued to evolve and we explored the design space of a contextual software command recommender system and completed a six-week user study (Li et al. We then expanded the scope of our project by implementing CommunityCommands, a fully functional and deployable recommender system. During a one-year period, the recommender system was used by more than 1100 users. We also present our system usage data and payoff, and provide an in-depth discussion of the challenges and design issues associated with developing and deploying the software command recommender system.
A Deployed People-to-People Recommender System in Online Dating
Wobcke, Wayne (University of New South Wales) | Krzywicki, Alfred (University of New South Wales) | Kim, Yang Sok (Keimyung University) | Cai, Xiongcai (University of New South Wales) | Bain, Michael (University of New South Wales) | Compton, Paul (University of New South Wales) | Mahidadia, Ashesh (smartAcademic)
Online dating is a prime application area for recommender systems, as users face an abundance of choice, must act on limited information, and are participating in a competitive matching market. The deployment was the result of thorough evaluation and an online trial of a number of methods, including profile-based, collaborative filtering and hybrid algorithms. Results taken a few months after deployment show that the recommender system delivered its projected benefits.
A Deployed People-to-People Recommender System in Online Dating
Wobcke, Wayne (University of New South Wales) | Krzywicki, Alfred (University of New South Wales) | Kim, Yang Sok (Keimyung University) | Cai, Xiongcai (University of New South Wales) | Bain, Michael (University of New South Wales) | Compton, Paul (University of New South Wales) | Mahidadia, Ashesh (smartAcademic)
Online dating is a prime application area for recommender systems, as users face an abundance of choice, must act on limited information, and are participating in a competitive matching market. This article reports on the successful deployment of a people-to-people recommender system on a large commercial online dating site. The deployment was the result of thorough evaluation and an online trial of a number of methods, including profile-based, collaborative filtering and hybrid algorithms. Results taken a few months after deployment show that the recommender system delivered its projected benefits.
Reports on the 2014 AAAI Fall Symposium Series
Cohen, Adam B. (Independent Consultant) | Chernova, Sonia (Worcester Polytechnic Institute) | Giordano, James (Georgetown University Medical Center) | Guerin, Frank (University of Aberdeen) | Hauser, Kris (Duke University) | Indurkhya, Bipin (AGH University of Science and Technology) | Leonetti, Matteo (University of Texas at Austin) | Medsker, Larry (Siena College) | Michalowski, Martin (Adventium Labs) | Sonntag, Daniel (German Research Center for Artificial Intelligence) | Stojanov, Georgi (American University of Paris) | Tecuci, Dan G. (IBM Watson, Austin) | Thomaz, Andrea (Georgia Institute of Technology) | Veale, Tony (University College Dublin) | Waltinger, Ulli (Siemens Corporate Technology)
The program also included six keynote presentations, a funding panel, a community panel, and multiple breakout sessions. The keynote presentations, given by speakers that have been working on AI for HRI for many years, focused on the larger intellectual picture of this subfield. Each speaker was asked to address, from his or her personal perspective, why HRI is an AI problem and how AI research can bring us closer to the reality of humans interacting with robots on everyday tasks. Speakers included Rodney Brooks (Rethink Robotics), Manuela Veloso (Carnegie Mellon University), Michael Goodrich (Brigham Young University), Benjamin Kuipers (University of Michigan), Maja Mataric (University of Southern California), and Brian Scassellati (Yale University).
Deploying CommunityCommands: A Software Command Recommender System Case Study
Li, Wei (Autodesk Research) | Matejka, Justin (Autodesk Research) | Grossmann, Tovi (Autodesk Research) | Fitzmaurice, George (Autodesk Research)
In 2009 we presented the idea of using collaborative filtering within a complex software application to help users learn new and relevant commands (Matejka et al. 2009). This project continued to evolve and we explored the design space of a contextual software command recommender system and completed a six-week user study (Li et al. 2011). We then expanded the scope of our project by implementing CommunityCommands, a fully functional and deployable recommender system. CommunityCommands was a publically available plug-in for Autodeskโs flagship software application AutoCAD. During a one-year period, the recommender system was used by more than 1100 users. In this article, we discuss how our practical system architecture was designed to leverage Autodeskโs existing Customer Involvement Program (CIP) data to deliver in-product contextual recommendations to end-users. We also present our system usage data and payoff, and provide an in-depth discussion of the challenges and design issues associated with developing and deploying the software command recommender system. Our work sets important groundwork for the future development of recommender systems within the domain of end-user software learning assistance.
Reports on the 2015 AAAI Spring Symposium Series
Agarwal, Nitin (University of Arkansas at Little Rock) | Andrist, Sean (University of Wisconsin-Madison) | Bohus, Dan (Microsoft Research) | Fang, Fei (University of Southern California) | Fenstermacher, Laurie (Wright-Patterson Air Force Base) | Kagal, Lalana (Massachusetts Institute of Technology) | Kido, Takashi (Rikengenesis) | Kiekintveld, Christopher (University of Texas at El Paso) | Lawless, W. F. (Paine College) | Liu, Huan (Arizona State University) | McCallum, Andrew (University of Massachusetts) | Purohit, Hemant (Wright State University) | Seneviratne, Oshani (Massachusetts Institute of Technology) | Takadama, Keiki (University of Electro-Communications) | Taylor, Gavin (US Naval Academy)
The AAAI 2015 Spring Symposium Series was held Monday through Wednesday, March 23-25, at Stanford University near Palo Alto, California. The titles of the seven symposia were Ambient Intelligence for Health and Cognitive Enhancement, Applied Computational Game Theory, Foundations of Autonomy and Its (Cyber) Threats: From Individuals to Interdependence, Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches, Logical Formalizations of Commonsense Reasoning, Socio-Technical Behavior Mining: From Data to Decisions, Structured Data for Humanitarian Technologies: Perfect Fit or Overkill? and Turn-Taking and Coordination in Human-Machine Interaction.The highlights of each symposium are presented in this report.
CiteSeerX: AI in a Digital Library Search Engine
Wu, Jian (Pennsylvania State University) | Williams, Kyle Mark (Pennsylvania State University) | Chen, Hung-Hsuan (Industrial Technology Research Institute) | Khabsa, Madian (Pennsylvania State University) | Caragea, Cornelia (University of North Texas) | Tuarob, Suppawong (Pennsylvania State University) | Ororbia, Alexander G. (Pennsylvania State University) | Jordan, Douglas (Pennsylvania State University) | Mitra, Prasenjit (Pennsylvania State University) | Giles, C. Lee (Pennsylvania State University)
Since then, the project has been directed by C. Lee Giles. While it is challenging to rebuild a system like Cite-SeerX from scratch, many of these AI technologies are transferable to other digital libraries and search engines. This is different from arXiv, Harvard ADS, and machine cluster to a private cloud using virtualization PubMed, where papers are submitted by authors or techniques (Wu et al. 2014). CiteSeerX extensively pushed by publishers. Unlike Google Scholar and leverages open source software, which significantly Microsoft Academic Search, where a significant portion reduces development effort. Red Hat of documents have only metadata (such as titles, Enterprise Linux (RHEL) 5 and 6 are the operating authors, and abstracts) available, users have full-text systems for all servers. Tomcat 7 is CiteSeerX keeps its own repository, which used for web service deployment on web and indexing serves cached versions of papers even if their previous servers. MySQL is used as the database management links are not alive any more. In additional to system to store metadata. Apache Solr is used paper downloads, CiteSeerX provides automatically for the index, and the Spring framework is used in extracted metadata and citation context, which the web application. In this section, we highlight four AI solutions that are Document metadata download service is not available leveraged by CiteSeerX and that tackle different challenges from Google Scholar and only recently available in metadata extraction and ingestion modules from Microsoft Academic Search. Finally, CiteSeerX (tagged by C, E, D, and A in figure 1).