Information Technology
Indexer Based Dynamic Web Services Discovery
Bashir, Saba, Khan, Farhan Hassan, Javed, M. Younus, Khan, Aihab, Khiyal, Malik Sikandar Hayat
Recent advancement in web services plays an important role in business to business and business to consumer interaction. Discovery mechanism is not only used to find a suitable service but also provides collaboration between service providers and consumers by using standard protocols. A static web service discovery mechanism is not only time consuming but requires continuous human interaction. This paper proposed an efficient dynamic web services discovery mechanism that can locate relevant and updated web services from service registries and repositories with timestamp based on indexing value and categorization for faster and efficient discovery of service. The proposed prototype focuses on quality of service issues and introduces concept of local cache, categorization of services, indexing mechanism, CSP (Constraint Satisfaction Problem) solver, aging and usage of translator. Performance of proposed framework is evaluated by implementing the algorithm and correctness of our method is shown. The results of proposed framework shows greater performance and accuracy in dynamic discovery mechanism of web services resolving the existing issues of flexibility, scalability, based on quality of service, and discovers updated and most relevant services with ease of usage.
Integrating Innate and Adaptive Immunity for Intrusion Detection
Tedesco, Gianni, Twycross, Jamie, Aickelin, Uwe
Network Intrusion Detection Systems (NDIS) monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS's rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alters, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier and Time Windows
Gu, Feng, Greensmith, Julie, Aickelin, Uwe
As an immune-inspired algorithm, the Dendritic Cell Algorithm (DCA), produces promising performances in the field of anomaly detection. This paper presents the application of the DCA to a standard data set, the KDD 99 data set. The results of different implementation versions of the DXA, including the antigen multiplier and moving time windows are reported. The real-valued Negative Selection Algorithm (NSA) using constant-sized detectors and the C4.5 decision tree algorithm are used, to conduct a baseline comparison. The results suggest that the DCA is applicable to KDD 99 data set, and the antigen multiplier and moving time windows have the same effect on the DCA for this particular data set. The real-valued NSA with constant-sized detectors is not applicable to the data set, and the C4.5 decision tree algorithm provides a benchmark of the classification performance for this data set.
Security Analysis of Online Centroid Anomaly Detection
Security issues are crucial in a number of machine learning applications, especially in scenarios dealing with human activity rather than natural phenomena (e.g., information ranking, spam detection, malware detection, etc.). It is to be expected in such cases that learning algorithms will have to deal with manipulated data aimed at hampering decision making. Although some previous work addressed the handling of malicious data in the context of supervised learning, very little is known about the behavior of anomaly detection methods in such scenarios. In this contribution we analyze the performance of a particular method -- online centroid anomaly detection -- in the presence of adversarial noise. Our analysis addresses the following security-related issues: formalization of learning and attack processes, derivation of an optimal attack, analysis of its efficiency and constraints. We derive bounds on the effectiveness of a poisoning attack against centroid anomaly under different conditions: bounded and unbounded percentage of traffic, and bounded false positive rate. Our bounds show that whereas a poisoning attack can be effectively staged in the unconstrained case, it can be made arbitrarily difficult (a strict upper bound on the attacker's gain) if external constraints are properly used. Our experimental evaluation carried out on real HTTP and exploit traces confirms the tightness of our theoretical bounds and practicality of our protection mechanisms.
Multibiometrics Belief Fusion
Kisku, Dakshina Ranjan, Sing, Jamuna Kanta, Gupta, Phalguni
This paper proposes a multimodal biometric system through Gaussian Mixture Model (GMM) for face and ear biometrics with belief fusion of the estimated scores characterized by Gabor responses and the proposed fusion is accomplished by Dempster-Shafer (DS) decision theory. Face and ear images are convolved with Gabor wavelet filters to extracts spatially enhanced Gabor facial features and Gabor ear features. Further, GMM is applied to the high-dimensional Gabor face and Gabor ear responses separately for quantitive measurements. Expectation Maximization (EM) algorithm is used to estimate density parameters in GMM. This produces two sets of feature vectors which are then fused using Dempster-Shafer theory. Experiments are conducted on multimodal database containing face and ear images of 400 individuals. It is found that use of Gabor wavelet filters along with GMM and DS theory can provide robust and efficient multimodal fusion strategy.
A Grey-Box Approach to Automated Mechanism Design
Niu, Jinzhong, Cai, Kai, Parsons, Simon
Auctions play an important role in electronic commerce, and have been used to solve problems in distributed computing. Automated approaches to designing effective auction mechanisms are helpful in reducing the burden of traditional game theoretic, analytic approaches and in searching through the large space of possible auction mechanisms. This paper presents an approach to automated mechanism design (AMD) in the domain of double auctions. We describe a novel parametrized space of double auctions, and then introduce an evolutionary search method that searches this space of parameters. The approach evaluates auction mechanisms using the framework of the TAC Market Design Game and relates the performance of the markets in that game to their constituent parts using reinforcement learning. Experiments show that the strongest mechanisms we found using this approach not only win the Market Design Game against known, strong opponents, but also exhibit desirable economic properties when they run in isolation.
Detecting Bots Based on Keylogging Activities
Al-Hammadi, Yousof, Aickelin, Uwe
A bot is a piece of software that is usually installed on an infected machine without the user's knowledge. A bot is controlled remotely by the attacker under a Command and Control structure. Recent statistics show that bots represent one of the fastest growing threats to our network by performing malicious activities such as email spamming or keylogging. However, few bot detection techniques have been developed to date. In this paper, we investigate a behavioural algorithm to detect a single bot that uses keylogging activity. Our approach involves the use of function calls analysis for the detection of the bot with a keylogging component. Correlation of the frequency of a specified time-window is performed to enhance he detection scheme. We perform a range of experiments with the spybot. Our results show that there is a high correlation between some function calls executed by this bot which indicates abnormal activity in our system.
Detecting Danger: Applying a Novel Immunological Concept to Intrusion Detection Systems
Greensmith, Julie, Aickelin, Uwe, Twycross, Jamie
In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, anti-virus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.
Feature Level Fusion of Biometrics Cues: Human Identification with Doddingtons Caricature
Kisku, Dakshina Ranjan, Gupta, Phalguni, Sing, Jamuna Kanta
This paper presents a multimodal biometric system of fingerprint and ear biometrics. Scale Invariant Feature Transform (SIFT) descriptor based feature sets extracted from fingerprint and ear are fused. The fused set is encoded by K-medoids partitioning approach with less number of feature points in the set. K-medoids partition the whole dataset into clusters to minimize the error between data points belonging to the clusters and its center. Reduced feature set is used to match between two biometric sets. Matching scores are generated using wolf-lamb user-dependent feature weighting scheme introduced by Doddington. The technique is tested to exhibit its robust performance.
Detecting Motifs in System Call Sequences
Wilson, William O., Feyereisl, Jan, Aickelin, Uwe
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs which repeat within time series data. The power of the algorithm is derived from its use of a small number of parameters with minimal assumptions. The algorithm searches from a completely neutral perspective that is independent of the data being analysed, and the underlying motifs. In this paper the motif tracking algorithm is applied to the search for patterns within sequences of low level system calls between the Linux kernel and the operating system's user space. The MTA is able to compress data found in large system call data sets to a limited number of motifs which summarise that data. The motifs provide a resource from which a profile of executed processes can be built. The potential for these profiles and new implications for security research are highlighted. A higher level call system language for measuring similarity between patterns of such calls is also suggested.