Goto

Collaborating Authors

 Information Technology


The DCA:SOMe Comparison A comparative study between two biologically-inspired algorithms

arXiv.org Artificial Intelligence

The Dendritic Cell Algorithm (DCA) is an immune-inspired algorithm, developed for the purpose of anomaly detection. The algorithm performs multi-sensor data fusion and correlation which results in a 'context aware' detection system. Previous applications of the DCA have included the detection of potentially malicious port scanning activity, where it has produced high rates of true positives and low rates of false positives. In this work we aim to compare the performance of the DCA and of a Self-Organizing Map (SOM) when applied to the detection of SYN port scans, through experimental analysis. A SOM is an ideal candidate for comparison as it shares similarities with the DCA in terms of the data fusion method employed. It is shown that the results of the two systems are comparable, and both produce false positives for the same processes. This shows that the DCA can produce anomaly detection results to the same standard as an established technique.


ToLeRating UR-STD

arXiv.org Artificial Intelligence

A new emerging paradigm of Uncertain Risk of Suspicion, Threat and Danger, observed across the field of information security, is described. Based on this paradigm a novel approach to anomaly detection is presented. Our approach is based on a simple yet powerful analogy from the innate part of the human immune system, the Toll-Like Receptors. We argue that such receptors incorporated as part of an anomaly detector enhance the detector's ability to distinguish normal and anomalous behaviour. In addition we propose that Toll-Like Receptors enable the classification of detected anomalies based on the types of attacks that perpetrate the anomalous behaviour. Classification of such type is either missing in existing literature or is not fit for the purpose of reducing the burden of an administrator of an intrusion detection system. For our model to work, we propose the creation of a taxonomy of the digital Acytota, based on which our receptors are created.


The Deterministic Dendritic Cell Algorithm

arXiv.org Artificial Intelligence

The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to anal- yse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.


Modeling Social Annotation: a Bayesian Approach

arXiv.org Artificial Intelligence

Collaborative tagging systems, such as Delicious, CiteULike, and others, allow users to annotate resources, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of social annotation, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated resources. Unfortunately, that approach had one major shortcoming: the number of topics and interests must be specified a priori. To address this drawback, we extend the model to a fully Bayesian framework, which offers a way to automatically estimate these numbers. In particular, the model allows the number of interests and topics to change as suggested by the structure of the data. We evaluate the proposed model in detail on the synthetic and real-world data by comparing its performance to Latent Dirichlet Allocation on the topic extraction task. For the latter evaluation, we apply the model to infer topics of Web resources from social annotations obtained from Delicious in order to discover new resources similar to a specified one. Our empirical results demonstrate that the proposed model is a promising method for exploiting social knowledge contained in user-generated annotations.


Combining Naive Bayes and Decision Tree for Adaptive Intrusion Detection

arXiv.org Artificial Intelligence

In this paper, a new learning algorithm for adaptive network intrusion detection using naive Bayesian classifier and decision tree is presented, which performs balance detections and keeps false positives at acceptable level for different types of network attacks, and eliminates redundant attributes as well as contradictory examples from training data that make the detection model complex. The proposed algorithm also addresses some difficulties of data mining such as handling continuous attribute, dealing with missing attribute values, and reducing noise in training data. Due to the large volumes of security audit data as well as the complex and dynamic properties of intrusion behaviours, several data miningbased intrusion detection techniques have been applied to network-based traffic data and host-based data in the last decades. However, there remain various issues needed to be examined towards current intrusion detection systems (IDS). We tested the performance of our proposed algorithm with existing learning algorithms by employing on the KDD99 benchmark intrusion detection dataset. The experimental results prove that the proposed algorithm achieved high detection rates (DR) and significant reduce false positives (FP) for different types of network intrusions using limited computational resources.


From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series

AAAI Conferences

We connect measures of public opinion measured from polls with sentiment measured from text. We analyze several surveys on consumer confidence and political opinion over the 2008 to 2009 period, and find they correlate to sentiment word frequencies in contempora- neous Twitter messages. While our results vary across datasets, in several cases the correlations are as high as 80%, and capture important large-scale trends. The re- sults highlight the potential of text streams as a substi- tute and supplement for traditional polling. consumer confidence and political opinion, and can also pre- dict future movements in the polls. We find that temporal smoothing is a critically important issue to support a suc- cessful model.


How Does the Data Sampling Strategy Impact the Discovery of Information Diffusion in Social Media?

AAAI Conferences

Platforms such as Twitter have provided researchers with ample opportunities to analytically study social phenomena. There are however, significant computational challenges due to the enormous rate of production of new information: researchers are therefore, often forced to analyze a judiciously selected “sample” of the data. Like other social media phenomena, information diffusion is a social process–it is affected by user context, and topic, in addition to the graph topology. This paper studies the impact of different attribute and topology based sampling strategies on the discovery of an important social media phenomena–information diffusion. We examine several widely-adopted sampling methods that select nodes based on attribute (random, location, and activity) and topology (forest fire) as well as study the impact of attribute based seed selection on topology based sampling. Then we develop a series of metrics for evaluating the quality of the sample, based on user activity (e.g. volume, number of seeds), topological (e.g. reach, spread) and temporal characteristics (e.g. rate). We additionally correlate the diffusion volume metric with two external variables–search and news trends. Our experiments reveal that for small sample sizes (30%), a sample that incorporates both topology and user context (e.g. location, activity) can improve on naive methods by a significant margin of ~15-20%.


A Ranking Based Model for Automatic Image Annotation in a Social Network

AAAI Conferences

We propose a relational ranking model for learning to tag images in social media sharing systems. This model learns to associate a ranked list of tags to unlabeled images, by considering simultaneously content information (visual or textual) and relational information among the images. It is able to handle implicit relations like content similarities, and explicit ones like friendship or authorship. The model itself is based on a transductive algorithm thats learns from both labeled and unlabeled data. Experiments on a real corpus extracted from Flickr show the effectiveness of this model.


Predicting the Speed, Scale, and Range of Information Diffusion in Twitter

AAAI Conferences

We present results of network analyses of information diffusion on Twitter, via users’ ongoing social interactions as denoted by “@username” mentions. Incorporating survival analysis, we constructed a novel model to capture the three major properties of information diffusion: speed, scale, and range. On the whole, we find that some properties of the tweets themselves predict greater information propagation but that properties of the users, the rate with which a user is mentioned historically in particular, are equal or stronger predictors. Implications for end users and system designers are discussed.


Mining User Home Location and Gender from Flickr Tags

AAAI Conferences

Personal photos and their associated metadata reveal different aspects of our lives and, when shared online, let others have an idea about us. Automating the extraction of personal information is an arduous task but it contributes to better understanding and serving users. Here we present methods for analyzing textual metadata associated to Flickr photos that unveil users’ home location and gender. We test our techniques on a sample of 30,000 people coming from six different countries, allowing us to compare results across cultures and point out similarities and differences.