Information Technology
Learning Reputation in an Authorship Network
Dhanjal, Charanpal, Clémençon, Stéphan
The problem of searching for experts in a given academic field is hugely important in both industry and academia. We study exactly this issue with respect to a database of authors and their publications. The idea is to use Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) to perform topic modelling in order to find authors who have worked in a query field. We then construct a coauthorship graph and motivate the use of influence maximisation and a variety of graph centrality measures to obtain a ranked list of experts. The ranked lists are further improved using a Markov Chain-based rank aggregation approach. The complete method is readily scalable to large datasets. To demonstrate the efficacy of the approach we report on an extensive set of computational simulations using the Arnetminer dataset. An improvement in mean average precision is demonstrated over the baseline case of simply using the order of authors found by the topic models.
Nonparametric Link Prediction in Large Scale Dynamic Networks
Sarkar, Purnamrita, Chakrabarti, Deepayan, Jordan, Michael
We propose a nonparametric approach to link prediction in large-scale dynamic networks. Our model uses graph-based features of pairs of nodes as well as those of their local neighborhoods to predict whether those nodes will be linked at each time step. The model allows for different types of evolution in different parts of the graph (e.g, growing or shrinking communities). We focus on large-scale graphs and present an implementation of our model that makes use of locality-sensitive hashing to allow it to be scaled to large problems. Experiments with simulated data as well as five real-world dynamic graphs show that we outperform the state of the art, especially when sharp fluctuations or nonlinearities are present. We also establish theoretical properties of our estimator, in particular consistency and weak convergence, the latter making use of an elaboration of Stein's method for dependency graphs.
Spatiotemporal Patterns in Social Networks
Bora, Nibir (University of Southern California) | Zaytsev, Vladimir (University of Southern California) | Chang, Yu-Han (University of Southern California) | Maheswaran, Rajiv (University of Southern California)
Social media generated by location-services-enabled cellular devices produce enormous amounts of location-based content. Spatiotemporal analysis of such data facilitate new ways of modeling human behavior and mobility patterns. In this paper, we use over 10 millions geo-tagged tweets from the city of Los Angeles as observations of human movement and apply them to understand the relationships of geographical regions, neighborhoods and gang territories. Using a graph based-representation of street gang territories as vertices and interactions between them as edges, we train a machine learning classifier to tell apart rival and non-rival links. We correctly identify 89% of the true rivalry network, which beats a standard baseline by about 30%. Looking at larger neighborhoods, we were able to show that the direction of displacement, i.e, the distribution of movement direction, can be used as a profile to identify physical (or geographic) barriers when it is not uniform. Finally, considering the temporal dimension of tweets, we detect events taking place around the city by identifying irregularities in tweeting patterns.
Designer Modeling for Personalized Game Content Creation Tools
Liapis, Antonios (IT University of Copenhagen) | Yannakakis, Georgios N. (University of Malta) | Togelius, Julian (IT University of Copenhagen)
With the growing use of automated content creation and computer-aided design tools in game development, there is potential for enhancing the design process through personalized interactions between the software and the game developer. This paper proposes designer modeling for capturing the designer's preferences, goals and processes from their interaction with a computer-aided design tool, and suggests methods and domains within game development where such a model can be applied. We describe how designer modeling could be integrated with current work on automated and mixed-initiative content creation, and envision future directions which focus on personalizing the processes to a designer's particular wishes.
Nonparametric Multi-group Membership Model for Dynamic Networks
Kim, Myunghwan, Leskovec, Jure
Relational data-like graphs, networks, and matrices-is often dynamic, where the relational structure evolves over time. A fundamental problem in the analysis of time-varying network data is to extract a summary of the common structure and the dynamics of the underlying relations between the entities. Here we build on the intuition that changes in the network structure are driven by the dynamics at the level of groups of nodes. We propose a nonparametric multi-group membership model for dynamic networks. Our model contains three main components: We model the birth and death of individual groups with respect to the dynamics of the network structure via a distance dependent Indian Buffet Process. We capture the evolution of individual node group memberships via a Factorial Hidden Markov model. And, we explain the dynamics of the network structure by explicitly modeling the connectivity structure of groups. We demonstrate our model's capability of identifying the dynamics of latent groups in a number of different types of network data. Experimental results show that our model provides improved predictive performance over existing dynamic network models on future network forecasting and missing link prediction.
Unsupervised learning human's activities by overexpressed recognized non-speech sounds
Smidtas, Serge, Peyrot, Magalie
Human activity and environment produces sounds such as, at home, the noise produced by water, cough, or television. These sounds can be used to determine the activity in the environment. The objective is to monitor a person's activity or determine his environment using a single low cost microphone by sound analysis. The purpose is to adapt programs to the activity or environment or detect abnormal situations. Some patterns of over expressed repeatedly in the sequences of recognized sounds inter and intra environment allow to characterize activities such as the entrance of a person in the house, or a tv program watched. We first manually annotated 1500 sounds of daily life activity of old persons living at home recognized sounds. Then we inferred an ontology and enriched the database of annotation with a crowed sourced manual annotation of 7500 sounds to help with the annotation of the most frequent sounds. Using learning sound algorithms, we defined 50 types of the most frequent sounds. We used this set of recognizable sounds as a base to tag sounds and put tags on them. By using over expressed number of motifs of sequences of the tags, we were able to categorize using only a single low-cost microphone, complex activities of daily life of a persona at home as watching TV, entrance in the apartment of a person, or phone conversation including detecting unknown activities as repeated tasks performed by users.
Stochastic blockmodel approximation of a graphon: Theory and consistent estimation
Airoldi, Edoardo M, Costa, Thiago B, Chan, Stanley H
Non-parametric approaches for analyzing network data based on exchangeable graph models (ExGM) have recently gained interest. The key object that defines an ExGM is often referred to as a graphon. This non-parametric perspective on network modeling poses challenging questions on how to make inference on the graphon underlying observed network data. In this paper, we propose a computationally efficient procedure to estimate a graphon from a set of observed networks generated from it. This procedure is based on a stochastic blockmodel approximation (SBA) of the graphon. We show that, by approximating the graphon with a stochastic block model, the graphon can be consistently estimated, that is, the estimation error vanishes as the size of the graph approaches infinity.
Adaptive Measurement-Based Policy-Driven QoS Management with Fuzzy-Rule-based Resource Allocation
Yerima, Suleiman Y., Parr, Gerard P., McClean, Sally I., Morrow, Philip J.
Fixed and wireless networks are increasingly converging towards common connectivity with IP-based core networks. Providing effective end-to-end resource and QoS management in such complex heterogeneous converged network scenarios requires unified, adaptive and scalable solutions to integrate and co-ordinate diverse QoS mechanisms of different access technologies with IP-based QoS. Policy-Based Network Management (PBNM) is one approach that could be employed to address this challenge. Hence, a policy-based framework for end-to-end QoS management in converged networks, CNQF (Converged Networks QoS Management Framework) has been proposed within our project. In this paper, the CNQF architecture, a Java implementation of its prototype and experimental validation of key elements are discussed. We then present a fuzzy-based CNQF resource management approach and study the performance of our implementation with real traffic flows on an experimental testbed. The results demonstrate the efficacy of our resource-adaptive approach for practical PBNM systems.
OnDroad Planner: Building Tourist Plans Using Traveling Social Network Information
Cenamor, Isabel (Universidad Carlos III de Madrid) | Rosa, Tomás de la (Universidad Carlos III de Madrid) | Borrajo, Daniel (Universidad Carlos III de Madrid)
One of the key challenges in automated planning is to define the sources of information that will feed the initial state and goals of each planning task. In many domains, the information comes from company's databases. In other applications, the information is harder to obtain and it is usually partial. In this paper, we will describe an application on travel planning, where the initial state and goals will be obtained by crowdsourcing. Travel planning requires the use of plenty Internet-based resources; some of them are related to human generated opinions on all kinds of matters (e.g. hotels, places to visit, restaurants, ...). We present the OnDroad planner, a system that creates personalized tourist plans using the human generated information gathered from the minube traveling social network. OnDroad proposes an initial tourist guide according to the recommendation of the users profiles and their contacts. In addition, this guide can be continuously updated with newly generated data.
Scalable Preference Aggregation in Social Networks
Dhamal, Swapnil (Indian Institute of Science, Bangalore) | Narahari, Y. (Indian Institute of Science, Bangalore)
In social choice theory, preference aggregation refers to computing an aggregate preference over a set of alternatives given individual preferences of all the agents. In real-world scenarios, it may not be feasible to gather preferences from all the agents. Moreover, determining the aggregate preference is computationally intensive. In this paper, we show that the aggregate preference of the agents in a social network can be computed efficiently and with sufficient accuracy using preferences elicited from a small subset of critical nodes in the network. Our methodology uses a model developed based on real-world data obtained using a survey on human subjects, and exploits network structure and homophily of relationships. Our approach guarantees good performance for aggregation rules that satisfy a property which we call expected weak insensitivity. We demonstrate empirically that many practically relevant aggregation rules satisfy this property. We also show that two natural objective functions in this context satisfy certain properties, which makes our methodology attractive for scalable preference aggregation over large scale social networks. We conclude that our approach is superior to random polling while aggregating preferences related to individualistic metrics, whereas random polling is acceptable in the case of social metrics.