Information Technology
Reports of the 2014 AAAI Spring Symposium Series
Jain, Manish (University of Southern California) | Jiang, Albert Xin (University of Southern California) | Kiddo, Takashi (Rikengenesis) | Takadama, Keiki (University of Electro-Communications) | Mercer, Eric G. (Brigham Young University) | Rungta, Neha (Digital Wisdom Institute) | Waser, Mark (Georgia Institute of Technology) | Wagner, Alan (Boeing Research and Technology) | Burke, Jennifer (Naval Research Laboratory) | Sofge, Don (Pain College) | Lawless, William (Texas Tech University) | Sridharan, Mohan (University of Birmingham) | Hawes, Nick (Pacific Social Architecting Corporation,) | Hwang, Tim
The Association for the Advancement of Artificial Intelligence was pleased to present the AAAI 2014 Spring Symposium Series, held Monday through Wednesday, March 24โ26, 2014. The titles of the eight symposia were Applied Computational Game Theory, Big Data Becomes Personal: Knowledge into Meaning, Formal Verification and Modeling in Human-Machine Systems, Implementing Selves with Safe Motivational Systems and Self-Improvement, The Intersection of Robust Intelligence and Trust in Autonomous Systems, Knowledge Representation and Reasoning in Robotics, Qualitative Representations for Robots, and Social Hacking and Cognitive Security on the Internet and New Media). This report contains summaries of the symposia, written, in most cases, by the cochairs of the symposium.
The Role of Emotions in Propagating Brands in Social Networks
Hochreiter, Ronald, Waldhauser, Christoph
A key aspect of word of mouth marketing are emotions. Emotions in texts help propagating messages in conventional advertising. In word of mouth scenarios, emotions help to engage consumers and incite to propagate the message further. While the function of emotions in offline marketing in general and word of mouth marketing in particular is rather well understood, online marketing can only offer a limited view on the function of emotions. In this contribution we seek to close this gap. We therefore investigate how emotions function in social media. To do so, we collected more than 30,000 brand marketing messages from the Google+ social networking site. Using state of the art computational linguistics classifiers, we compute the sentiment of these messages. Starting out with Poisson regression-based baseline models, we seek to replicate earlier findings using this large data set. We extend upon earlier research by computing multi-level mixed effects models that compare the function of emotions across different industries. We find that while the well known notion of activating emotions propagating messages holds in general for our data as well. But there are significant differences between the observed industries.
Collapsed Variational Bayes Inference of Infinite Relational Model
Ishiguro, Katsuhiko, Sato, Issei, Ueda, Naonori
The Infinite Relational Model (IRM) is a probabilistic model for relational data clustering that partitions objects into clusters based on observed relationships. This paper presents Averaged CVB (ACVB) solutions for IRM, convergence-guaranteed and practically useful fast Collapsed Variational Bayes (CVB) inferences. We first derive ordinary CVB and CVB0 for IRM based on the lower bound maximization. CVB solutions yield deterministic iterative procedures for inferring IRM given the truncated number of clusters. Our proposal includes CVB0 updates of hyperparameters including the concentration parameter of the Dirichlet Process, which has not been studied in the literature. To make the CVB more practically useful, we further study the CVB inference in two aspects. First, we study the convergence issues and develop a convergence-guaranteed algorithm for any CVB-based inferences called ACVB, which enables automatic convergence detection and frees non-expert practitioners from difficult and costly manual monitoring of inference processes. Second, we present a few techniques for speeding up IRM inferences. In particular, we describe the linear time inference of CVB0, allowing the IRM for larger relational data uses. The ACVB solutions of IRM showed comparable or better performance compared to existing inference methods in experiments, and provide deterministic, faster, and easier convergence detection.
Ambiguity-Driven Fuzzy C-Means Clustering: How to Detect Uncertain Clustered Records
Ghaffari, Meysam, Ghadiri, Nasser
As a well-known clustering algorithm, Fuzzy C-Means (FCM) allows each input sample to belong to more than one cluster, providing more flexibility than non-fuzzy clustering methods. However, the accuracy of FCM is subject to false detections caused by noisy records, weak feature selection and low certainty of the algorithm in some cases. The false detections are very important in some decision-making application domains like network security and medical diagnosis, where weak decisions based on such false detections may lead to catastrophic outcomes. They are mainly emerged from making decisions about a subset of records that do not provide enough evidence to make a good decision. In this paper, we propose a method for detecting such ambiguous records in FCM by introducing a certainty factor to decrease invalid detections. This approach enables us to send the detected ambiguous records to another discrimination method for a deeper investigation, thus increasing the accuracy by lowering the error rate. Most of the records are still processed quickly and with low error rate which prevents performance loss compared to similar hybrid methods. Experimental results of applying the proposed method on several datasets from different domains show a significant decrease in error rate as well as improved sensitivity of the algorithm.
Sensing Subjective Well-being from Social Media
Hao, Bibo, Li, Lin, Gao, Rui, Li, Ang, Zhu, Tingshao
Subjective Well-being(SWB), which refers to how people experience the quality of their lives, is of great use to public policy-makers as well as economic, sociological research, etc. Traditionally, the measurement of SWB relies on time-consuming and costly self-report questionnaires. Nowadays, people are motivated to share their experiences and feelings on social media, so we propose to sense SWB from the vast user generated data on social media. By utilizing 1785 users' social media data with SWB labels, we train machine learning models that are able to "sense" individual SWB from users' social media. Our model, which attains the state-by-art prediction accuracy, can then be used to identify SWB of large population of social media users in time with very low cost.
Nonconvex Statistical Optimization: Minimax-Optimal Sparse PCA in Polynomial Time
Wang, Zhaoran, Lu, Huanran, Liu, Han
Sparse principal component analysis (PCA) involves nonconvex optimization for which the global solution is hard to obtain. To address this issue, one popular approach is convex relaxation. However, such an approach may produce suboptimal estimators due to the relaxation effect. To optimally estimate sparse principal subspaces, we propose a two-stage computational framework named "tighten after relax": Within the 'relax' stage, we approximately solve a convex relaxation of sparse PCA with early stopping to obtain a desired initial estimator; For the 'tighten' stage, we propose a novel algorithm called sparse orthogonal iteration pursuit (SOAP), which iteratively refines the initial estimator by directly solving the underlying nonconvex problem. A key concept of this two-stage framework is the basin of attraction. It represents a local region within which the `tighten' stage has desired computational and statistical guarantees. We prove that, the initial estimator obtained from the 'relax' stage falls into such a region, and hence SOAP geometrically converges to a principal subspace estimator which is minimax-optimal within a certain model class. Unlike most existing sparse PCA estimators, our approach applies to the non-spiked covariance models, and adapts to non-Gaussianity as well as dependent data settings. Moreover, through analyzing the computational complexity of the two stages, we illustrate an interesting phenomenon that larger sample size can reduce the total iteration complexity. Our framework motivates a general paradigm for solving many complex statistical problems which involve nonconvex optimization with provable guarantees.
A Case Study in Text Mining: Interpreting Twitter Data From World Cup Tweets
Godfrey, Daniel, Johns, Caley, Meyer, Carl, Race, Shaina, Sadek, Carol
Cluster analysis is a field of data analysis that extracts underlying patterns in data. One application of cluster analysis is in text-mining, the analysis of large collections of text to find similarities between documents. We used a collection of about 30,000 tweets extracted from Twitter just before the World Cup started. A common problem with real world text data is the presence of linguistic noise. In our case it would be extraneous tweets that are unrelated to dominant themes. To combat this problem, we created an algorithm that combined the DBSCAN algorithm and a consensus matrix. This way we are left with the tweets that are related to those dominant themes. We then used cluster analysis to find those topics that the tweets describe. We clustered the tweets using k-means, a commonly used clustering algorithm, and Non-Negative Matrix Factorization (NMF) and compared the results. The two algorithms gave similar results, but NMF proved to be faster and provided more easily interpreted results. We explored our results using two visualization tools, Gephi and Wordle.
A convex pseudo-likelihood framework for high dimensional partial correlation estimation with convergence guarantees
Khare, Kshitij, Oh, Sang-Yun, Rajaratnam, Bala
Sparse high dimensional graphical model selection is a topic of much interest in modern day statistics. A popular approach is to apply l1-penalties to either (1) parametric likelihoods, or, (2) regularized regression/pseudo-likelihoods, with the latter having the distinct advantage that they do not explicitly assume Gaussianity. As none of the popular methods proposed for solving pseudo-likelihood based objective functions have provable convergence guarantees, it is not clear if corresponding estimators exist or are even computable, or if they actually yield correct partial correlation graphs. This paper proposes a new pseudo-likelihood based graphical model selection method that aims to overcome some of the shortcomings of current methods, but at the same time retain all their respective strengths. In particular, we introduce a novel framework that leads to a convex formulation of the partial covariance regression graph problem, resulting in an objective function comprised of quadratic forms. The objective is then optimized via a coordinate-wise approach. The specific functional form of the objective function facilitates rigorous convergence analysis leading to convergence guarantees; an important property that cannot be established using standard results, when the dimension is larger than the sample size, as is often the case in high dimensional applications. These convergence guarantees ensure that estimators are well-defined under very general conditions, and are always computable. In addition, the approach yields estimators that have good large sample properties and also respect symmetry. Furthermore, application to simulated/real data, timing comparisons and numerical convergence is demonstrated. We also present a novel unifying framework that places all graphical pseudo-likelihood methods as special cases of a more general formulation, leading to important insights.
An Evasion and Counter-Evasion Study in Malicious Websites Detection
Xu, Li, Zhan, Zhenxin, Xu, Shouhuai, Ye, Keyin
Malicious websites are a major cyber attack vector, and effective detection of them is an important cyber defense task. The main defense paradigm in this regard is that the defender uses some kind of machine learning algorithms to train a detection model, which is then used to classify websites in question. Unlike other settings, the following issue is inherent to the problem of malicious websites detection: the attacker essentially has access to the same data that the defender uses to train its detection models. This 'symmetry' can be exploited by the attacker, at least in principle, to evade the defender's detection models. In this paper, we present a framework for characterizing the evasion and counter-evasion interactions between the attacker and the defender, where the attacker attempts to evade the defender's detection models by taking advantage of this symmetry. Within this framework, we show that an adaptive attacker can make malicious websites evade powerful detection models, but proactive training can be an effective counter-evasion defense mechanism. The framework is geared toward the popular detection model of decision tree, but can be adapted to accommodate other classifiers.
Differentially-Private Logistic Regression for Detecting Multiple-SNP Association in GWAS Databases
Yu, Fei, Rybar, Michal, Uhler, Caroline, Fienberg, Stephen E.
Following the publication of an attack on genome-wide association studies (GWAS) data proposed by Homer et al., considerable attention has been given to developing methods for releasing GWAS data in a privacy-preserving way. Here, we develop an end-to-end differentially private method for solving regression problems with convex penalty functions and selecting the penalty parameters by cross-validation. In particular, we focus on penalized logistic regression with elastic-net regularization, a method widely used to in GWAS analyses to identify disease-causing genes. We show how a differentially private procedure for penalized logistic regression with elastic-net regularization can be applied to the analysis of GWAS data and evaluate our method's performance.