Not enough data to create a plot.
Try a different view from the menu above.
Information Technology
Discovering Emerging Topics in Social Streams via Link Anomaly Detection
Takahashi, Toshimitsu, Tomioka, Ryota, Yamanishi, Kenji
Detection of emerging topics are now receiving renewed interest motivated by the rapid growth of social networks. Conventional term-frequency-based approaches may not be appropriate in this context, because the information exchanged are not only texts but also images, URLs, and videos. We focus on the social aspects of theses networks. That is, the links between users that are generated dynamically intentionally or unintentionally through replies, mentions, and retweets. We propose a probability model of the mentioning behaviour of a social network user, and propose to detect the emergence of a new topic from the anomaly measured through the model. We combine the proposed mention anomaly score with a recently proposed change-point detection technique based on the Sequentially Discounting Normalized Maximum Likelihood (SDNML), or with Kleinberg's burst model. Aggregating anomaly scores from hundreds of users, we show that we can detect emerging topics only based on the reply/mention relationships in social network posts. We demonstrate our technique in a number of real data sets we gathered from Twitter. The experiments show that the proposed mention-anomaly-based approaches can detect new topics at least as early as the conventional term-frequency-based approach, and sometimes much earlier when the keyword is ill-defined.
Resource Allocation Among Agents with MDP-Induced Preferences
Allocating scarce resources among agents to maximize global utility is, in general, computationally challenging. We focus on problems where resources enable agents to execute actions in stochastic environments, modeled as Markov decision processes (MDPs), such that the value of a resource bundle is defined as the expected value of the optimal MDP policy realizable given these resources. We present an algorithm that simultaneously solves the resource-allocation and the policy-optimization problems. This allows us to avoid explicitly representing utilities over exponentially many resource bundles, leading to drastic (often exponential) reductions in computational complexity. We then use this algorithm in the context of self-interested agents to design a combinatorial auction for allocating resources. We empirically demonstrate the effectiveness of our approach by showing that it can, in minutes, optimally solve problems for which a straightforward combinatorial resource-allocation technique would require the agents to enumerate up to 2^100 resource bundles and the auctioneer to solve an NP-complete problem with an input of that size.
Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach
Di Noia, T., Di Sciascio, E., Donini, F. M.
Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery.
Auctions with Severely Bounded Communication
Blumrosen, L., Nisan, N., Segal, I.
We study auctions with severe bounds on the communication allowed: each bidder may only transmit t bits of information to the auctioneer. We consider both welfare- and profit-maximizing auctions under this communication restriction. For both measures, we determine the optimal auction and show that the loss incurred relative to unconstrained auctions is mild. We prove non-surprising properties of these kinds of auctions, e.g., that in optimal mechanisms bidders simply report the interval in which their valuation lies in, as well as some surprising properties, e.g., that asymmetric auctions are better than symmetric ones and that multi-round auctions reduce the communication complexity only by a linear factor.
Differentially Private Online Learning
Jain, Prateek, Kothari, Pravesh, Thakurta, Abhradeep
In this paper, we consider the problem of preserving privacy in the online learning setting. We study the problem in the online convex programming (OCP) framework---a popular online learning setting with several interesting theoretical and practical implications---while using differential privacy as the formal privacy measure. For this problem, we distill two critical attributes that a private OCP algorithm should have in order to provide reasonable privacy as well as utility guarantees: 1) linearly decreasing sensitivity, i.e., as new data points arrive their effect on the learning model decreases, 2) sub-linear regret bound---regret bound is a popular goodness/utility measure of an online learning algorithm. Given an OCP algorithm that satisfies these two conditions, we provide a general framework to convert the given algorithm into a privacy preserving OCP algorithm with good (sub-linear) regret. We then illustrate our approach by converting two popular online learning algorithms into their differentially private variants while guaranteeing sub-linear regret ($O(\sqrt{T})$). Next, we consider the special case of online linear regression problems, a practically important class of online learning problems, for which we generalize an approach by Dwork et al. to provide a differentially private algorithm with just $O(\log^{1.5} T)$ regret. Finally, we show that our online learning framework can be used to provide differentially private algorithms for offline learning as well. For the offline learning problem, our approach obtains better error bounds as well as can handle larger class of problems than the existing state-of-the-art methods Chaudhuri et al.
Active Learning for Node Classification in Assortative and Disassortative Networks
Moore, Cristopher, Yan, Xiaoran, Zhu, Yaojia, Rouquier, Jean-Baptiste, Lane, Terran
In many real-world networks, nodes have class labels, attributes, or variables that affect the network's topology. If the topology of the network is known but the labels of the nodes are hidden, we would like to select a small subset of nodes such that, if we knew their labels, we could accurately predict the labels of all the other nodes. We develop an active learning algorithm for this problem which uses information-theoretic techniques to choose which nodes to explore. We test our algorithm on networks from three different domains: a social network, a network of English words that appear adjacently in a novel, and a marine food web. Our algorithm makes no initial assumptions about how the groups connect, and performs well even when faced with quite general types of network structure. In particular, we do not assume that nodes of the same class are more likely to be connected to each other---only that they connect to the rest of the network in similar ways.
Measuring Intelligence through Games
Schaul, Tom, Togelius, Julian, Schmidhuber, Jรผrgen
Artificial general intelligence (AGI) refers to research aimed at tackling the full problem of artificial intelligence, that is, create truly intelligent agents. This sets it apart from most AI research which aims at solving relatively narrow domains, such as character recognition, motion planning, or increasing player satisfaction in games. But how do we know when an agent is truly intelligent? A common point of reference in the AGI community is Legg and Hutter's formal definition of universal intelligence, which has the appeal of simplicity and generality but is unfortunately incomputable. Games of various kinds are commonly used as benchmarks for "narrow" AI research, as they are considered to have many important properties. We argue that many of these properties carry over to the testing of general intelligence as well. We then sketch how such testing could practically be carried out. The central part of this sketch is an extension of universal intelligence to deal with finite time, and the use of sampling of the space of games expressed in a suitably biased game description language.
Confidentiality-Preserving Data Publishing for Credulous Users by Extended Abduction
Inoue, Katsumi, Sakama, Chiaki, Wiese, Lena
Publishing private data on external servers incurs the problem of how to avoid unwanted disclosure of confidential data. We study a problem of confidentiality in extended disjunctive logic programs and show how it can be solved by extended abduction. In particular, we analyze how credulous non-monotonic reasoning affects confidentiality.
InSitu: An Approach for Dynamic Context Labeling Based on Product Usage and Sound Analysis
Lyardet, Fernando (Technical University of Darmstadt) | Hadjakos, Aristotelis (Technical University of Darmstadt) | Szeto, Diego Wong (Technical University of Darmstadt)
Smart environments offer a vision of unobtrusive interaction with our surroundings, interpreting and anticipating our needs. One key aspect for making environments smart is the ability to recognize the current context. However, like any human space, smart environments are subject to changes and mutations of their purposes and their composition as people shape their living places according to their needs. In this paper we present an approach for recognizing context situations in smart environments that addresses this challenge. We propose a formalism for describing and sharing context states (or situations) and an architecture for gradually introducing contextual knowledge to an environment, where the current context is determined on sensing people's usage of devices and sound analysis.
Energy Outlier Detection in Smart Environments
Chen, Chao (Washington State University) | Cook, Diane J. (Washington State University)
Despite a dramatic growth of power consumption inhouseholds, less attention has been paid to monitoring,analyzing and predicting energy usage. In this paper,we propose a framework to mine raw energy data bytransforming time series energy data into a symbol se-quence, and then extend a suffix tree data structure asan efficient representation to analyze global structuralpatterns. Then, we use a clustering algorithm to detectenergy pattern outliers which are far from their clustercentroids. To validate our approach, we use real powerdata collected from a smart apartment testbed duringtwo months.