Government
AI Planning: Systems and Techniques
Hendler, James A., Tate, Austin, Drummond, Mark
This article reviews research in the development of plan generation systems. Our goal is to familiarize the reader with some of the important problems that have arisen in the design of planning systems and to discuss some of the many solutions that have been developed in the over 30 years of research in this area. In this article, we broadly cover the major ideas in the field of AI planning and show the direction in which some current research is going. We define some of the terms commonly used in the planning literature, describe some of the basic issues coming from the design of planning systems, and survey results in the area. Because such tasks are virtually never ending, and thus, any finite document must be incomplete, we provide references to connect each idea to the appropriate literature and allow readers access to the work most relevant to their own research or applications.
Artificial Intelligence and Marine Design
Amarel, Saul, Steinberg, Louis
In the last few years, interest has grown in exploring AI approaches to design problems, both because of the enormous potential impact on productivity of improved design tools and because of the interesting basic AI issues that these problems raise. In particular, a number of ship designers and AI researchers recently became interested in applying AI to the hydrodynamic design of ship hulls. A typical problem here is to design the shape of a ship's hull in response to desired hydrodynamic properties such as drag and stability, taking into consideration a variety of design constraints, such as total hull volume.
Statistical Prediction with Kanerva's Sparse Distributed Memory
ABSTRACT A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near-or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with'Genetic Algorithms', and a method for improving the capacity of SDM even when used as an associative memory. OVERVIEW This work is the result of studies involving two seemingly separate topics that proved to share a common framework. The fIrst topic, statistical prediction, is the task of associating extremely large perceptual state vectors with future events.
ALVINN: An Autonomous Land Vehicle in a Neural Network
ALVINN (Autonomous Land Vehicle In a Neural Network) is a 3-layer back-propagation network designed for the task of road following. Currently ALVINN takes images from a camera and a laser range finder as input and produces as output the direction the vehicle should travel in order to follow the road. Training has been conducted using simulated road images. Successful tests on the Carnegie Mellon autonomous navigation test vehicle indicate that the network can effectively follow real roads under certain field conditions. The representation developed to perfOIm the task differs dramatically when the networlc is trained under various conditions, suggesting the possibility of a novel adaptive autonomous navigation system capable of tailoring its processing to the conditions at hand.
Neural Network Recognizer for Hand-Written Zip Code Digits
Denker, John S., Gardner, W. R., Graf, Hans Peter, Henderson, Donnie, Howard, R. E., Hubbard, W., Jackel, L. D., Baird, Henry S., Guyon, Isabelle
This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.