Government
Probabilistic Image Sensor Fusion
Sharma, Ravi K., Leen, Todd K., Pavel, Misha
We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying, true scene. A Bayesian framework then provides for maximum likelihood or maximum a posteriori estimates of the true scene from the sensor images. Maximum likelihood estimates of the parameters of the image formation model involve (local) second order image statistics, and thus are related to local principal component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. 1 Introduction Advances in sensing devices have fueled the deployment of multiple sensors in several computational vision systems [1, for example]. Using multiple sensors can increase reliability with respect to single sensor systems.
Improved Switching among Temporally Abstract Actions
Sutton, Richard S., Singh, Satinder P., Precup, Doina, Ravindran, Balaraman
In robotics and other control applications it is commonplace to have a preexisting setof controllers for solving subtasks, perhaps handcrafted or previously learned or planned, and still face a difficult problem of how to choose and switch among the controllers to solve an overall task as well as possible. In this paper we present a framework based on Markov decision processes and semi-Markov decision processes for phrasing this problem, a basic theorem regarding the improvement in performance that can be obtained byswitching flexibly between given controllers, and example applications ofthe theorem. In particular, we show how an agent can plan with these high-level controllers and then use the results of such planning to find an even better plan, by modifying the existing controllers, with negligible additional cost and no re-planning. In one of our examples, the complexity of the problem is reduced from 24 billion state-action pairs to less than a million state-controller pairs. In many applications, solutions to parts of a task are known, either because they were handcrafted bypeople or because they were previously learned or planned. For example, in robotics applications, there may exist controllers for moving joints to positions, picking up objects, controlling eye movements, or navigating along hallways. More generally, an intelligent systemmay have available to it several temporally extended courses of action to choose from. In such cases, a key challenge is to take full advantage of the existing temporally extended actions,to choose or switch among them effectively, and to plan at their level rather than at the level of individual actions.
Using Collective Intelligence to Route Internet Traffic
Wolpert, David, Tumer, Kagan, Frank, Jeremy
A COllective INtelligence (COIN) is a set of interacting reinforcement learning(RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using thattheory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously investigated RL-based, shortest path routing algorithms. 1 INTRODUCTION COllective INtelligences (COINs) are large, sparsely connected recurrent neural networks, whose "neurons" are reinforcement learning (RL) algorithms. The distinguishing featureof COINs is that their dynamics involves no centralized control, but only the collective effects of the individual neurons each modifying their behavior viatheir individual RL algorithms. This restriction holds even though the goal of the COIN concerns the system's global behavior.
Unsupervised Classification with Non-Gaussian Mixture Models Using ICA
Lee, Te-Won, Lewicki, Michael S., Sejnowski, Terrence J.
Te-Won Lee, Michael S. Lewicki and Terrence Sejnowski Howard Hughes Medical Institute Computational Neurobiology Laboratory The Salk Institute 10010 N. Torrey Pines Road La Jolla, California 92037, USA {tewon,lewicki,terry}Osalk.edu Abstract We present an unsupervised classification algorithm based on an ICA mixture model. The ICA mixture model assumes that the observed data can be categorized into several mutually exclusive data classes in which the components in each class are generated by a linear mixture of independent sources. The algorithm finds the independent sources, the mixing matrix for each class and also computes the class membership probability for each data point. This approach extends the Gaussian mixture model so that the classes can have non-Gaussian structure. We demonstrate that this method can learn efficient codes to represent images of natural scenes and text.
Probabilistic Image Sensor Fusion
Sharma, Ravi K., Leen, Todd K., Pavel, Misha
We present a probabilistic method for fusion of images produced by multiple sensors. The approach is based on an image formation model in which the sensor images are noisy, locally linear functions of an underlying, true scene. A Bayesian framework then provides for maximum likelihood or maximum a posteriori estimates of the true scene from the sensor images. Maximum likelihood estimates of the parameters of the image formation model involve (local) second order image statistics, and thus are related to local principal component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. 1 Introduction Advances in sensing devices have fueled the deployment of multiple sensors in several computational vision systems [1, for example].
Bayesian Modeling of Facial Similarity
Moghaddam, Baback, Jebara, Tony, Pentland, Alex
In previous work [6, 9, 10], we advanced a new technique for direct visual matching of images for the purposes of face recognition and image retrieval, using a probabilistic measure of similarity based primarily on a Bayesian (MAP) analysis of image differences, leadingto a "dual" basis similar to eigenfaces [13]. The performance advantage of this probabilistic matching technique over standard Euclidean nearest-neighbor eigenface matching was recently demonstrated using results from DARPA's 1996 "FERET" face recognition competition, in which this probabilistic matching algorithm was found to be the top performer. We have further developed a simple method of replacing the costly compution of nonlinear (online) Bayesian similarity measures by the relatively inexpensive computation of linear (offline) subspace projections and simple (online) Euclidean norms, thus resulting in a significant computational speedup for implementation with very large image databases as typically encountered in real-world applications.
Bayesian Modeling of Facial Similarity
Moghaddam, Baback, Jebara, Tony, Pentland, Alex
In previous work [6, 9, 10], we advanced a new technique for direct visual matching of images for the purposes of face recognition and image retrieval, using a probabilistic measure of similarity based primarily on a Bayesian (MAP) analysis of image differences, leading to a "dual" basis similar to eigenfaces [13]. The performance advantage of this probabilistic matching technique over standard Euclidean nearest-neighbor eigenface matching was recently demonstrated using results from DARPA's 1996 "FERET" face recognition competition, in which this probabilistic matching algorithm was found to be the top performer. We have further developed a simple method of replacing the costly com put ion of nonlinear (online) Bayesian similarity measures by the relatively inexpensive computation of linear (offline) subspace projections and simple (online) Euclidean norms, thus resulting in a significant computational speedup for implementation with very large image databases as typically encountered in real-world applications.
Basis Selection for Wavelet Regression
Wheeler, Kevin R., Dhawan, Atam P.
A wavelet basis selection procedure is presented for wavelet regression. Both the basis and threshold are selected using crossvalidation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated using widely published sampled functions. The results of the method are contrasted with other basis function based methods.
Using Collective Intelligence to Route Internet Traffic
Wolpert, David, Tumer, Kagan, Frank, Jeremy
A COllective INtelligence (COIN) is a set of interacting reinforcement learning (RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously investigated RL-based, shortest path routing algorithms. 1 INTRODUCTION COllective INtelligences (COINs) are large, sparsely connected recurrent neural networks, whose "neurons" are reinforcement learning (RL) algorithms. The distinguishing feature of COINs is that their dynamics involves no centralized control, but only the collective effects of the individual neurons each modifying their behavior via their individual RL algorithms. This restriction holds even though the goal of the COIN concerns the system's global behavior.