Not enough data to create a plot.
Try a different view from the menu above.
Government
What Should Artificial Intelligence Want from the Supercomputers?
While some proposals for supercomputers increase the powers of existing machines like CDC and Cray supercomputers, others suggest radical changes of architecture to speed up non-traditional operations such as logical inference in PROLOG, recognition/ action in production systems, or message passing. We examine the case of parallel PROLOG to identify several related computations which subsume those of parallel PROLOG, but which have much wider interest, and which may have roughly the same difficulty of mechanization. Similar considerations apply to some other proposed architectures as well, raising the possibility that current efforts may be limiting their aims unnecessarily.
GLISP: A Lisp-Based Programming System with Data Abstraction
GLISP is a high-level language that is complied into LISP. It provides a versatile abstract-data-type facility with hierarchical inheritance of properties and object-centered programming. GLISP programs are shorter and more readable than equivalent LISP programs. The object code produced by GLISP is optimized, making it about as efficient as handwritten Lisp. An integrated programming environment is provided, including automatic incremental compilation, interpretive programming features, and an intelligent display-based inspector/editor for data and data-type descriptions. GLISP code is relatively portable; the compiler and data inspector are implemented for most major dialects of LISP and are available free or at nominal cost.
The Banishment of Paper-Work
It may come as a surprise to some to be told that the modern digital computer is really quite old in concept, and the year 1984 will be celebrated as the 150th anniversary of the invention of the first computer the Analytical Engine of the Englishman Charles Babbage. One hundred and fifty years is really quite a long period of time in terms of modern science and industry and, at first glance, it seems unduly long for new concept to come into full fruition. Unfortunately, Charles Babbage was ahead of his time, and it took one hundred years of technical development, the impetus of the second World War and the perception of John Von Neumann to bring the computer into being. Now twenty years later and with several generations of computer behind us, we are in a position to make a somewhat more meaningful prognosis than appeared possible in, say 1948. We can only hope that we will not be as far off actuality as we believe George Orwell to be, or as far off in our time scale as were Charles Babbage and his almost equally famous interpreter, Lady Lovelace.
Artificial Intelligence Research at the Artificial Intelligence Laboratory, Massachusetts Institute of Technology
The primary goal of the Artificial Intelligence Laboratory is to understand how computers can be made to exhibit intelligence. Two corollary goals are to make computers more useful and to understand certain aspects of human intelligence. Current research includes work on computer robotics and vision, expert systems, learning and commonsense reasoning, natural language understanding, and computer architecture.
Methodological Simplicity in Expert System Construction: The Case of Judgments and Reasoned Assumptions
Editors' Note: Many expert systems require some means criticisms of this approach from those steeped in the practical of handling heuristic rules whose conclusions are less than certain issues of constructing large rule-based expert systems. Abstract the expert system draws inferences in solving different problems. Doyle's paper argues that it is difficult for a human expert "certainty factors," and in spite of the experimentally observed insensitivity of system performance to perturbations of the chosen values Recent successes of "expert systems" stem from much Research Projects Agency (DOD), ARPA Order No. 3597, monitored In the following, we explain the modified approach together with its practical and theoretical attractions. The client's income bracket is 50%, can be found (Minsky, 1975; Shortliffe & Buchanan, 1975; and 2. The client carefully studies market trends, Duda, Hart, & Nilsson, 1976; Szolovits, 1978; Szolovits & THEN: 3. There is evidence (0.8) that the investment Pauker, 1978). Reasoned Assumptions (from Davis, 1979) and would use the rule to draw conclusions whose "certainty factors" depend on the observed certainty Although our approach usually approximates that of Bayesian probabilities, accommodates representational systems based on "frames" namely as subjective degrees of belief.
Artificial Intelligence: Some Legal Approaches and Implications
Various groups of ascertainable individuals have been granted the status of "persons" under American law, while that status has been denied to other groups. This article examines various analogies that might be drawn by courts in deciding whether to extend "person" status to intelligent machines, and the limitations that might be placed upon such recognition. As an alternative analysis, this article questions the legal status of various human/machine interfaces, and notes the difficulty in establishing an absolute point beyond which legal recognition will not extend.
Research at Fairchild
The Fairchild Laboratory for Artificial Intelligence Research (FLAIR) was inaugurated in October, 1980, with the purposes of introduction AI Technology into Fairchild Camera and Instrument Corporation, and of broadening the AI base of its parent company, Schlumberger Ltd. The charter of the laboratory includes basic and applied research in all AI disciplines. Currently, we have significant efforts underway in several areas of computational perception, knowledge representation and reasoning, and AI-related architectures. We also engage in various tool-building activities to support our research program. The current computational environment includes several large mainframes dedicated to AI research, a number of high-performance personal scientific machines, and extensive graphics capabilities.
The Current State of AI: One Man's Opinion
In this article I wish to address some of the problems that confront AI. I am giving, no doubt, what amounts to no more than one man's opinion. It is my hope, in expressing these opinions, that the issues begin to be discussed in some public forum. I will attempt to start this debate by answering some questions about the field that have been posed to me over time. In some cases, what follows are questions that I have simply posed to myself.