Plotting

 Government


Autonomous Driving in Traffic: Boss and the Urban Challenge

AI Magazine

The DARPA Urban Challenge was a competition to develop autonomous vehicles capable of safely, reliably and robustly driving in traffic. In this article we introduce Boss, the autonomous vehicle that won the challenge. Boss is complex artificially intelligent software system embodied in a 2007 Chevy Tahoe. To navigate safely, the vehicle builds a model of the world around it in real time. This model is used to generate safe routes and motion plans in both on roads and in unstructured zones. An essential part of Boss’ success stems from its ability to safely handle both abnormal situations and system glitches.


Visualizing Topics with Multi-Word Expressions

arXiv.org Machine Learning

We describe a new method for visualizing topics, the distributions over terms that are automatically extracted from large text corpora using latent variable models. Our method finds significant $n$-grams related to a topic, which are then used to help understand and interpret the underlying distribution. Compared with the usual visualization, which simply lists the most probable topical terms, the multi-word expressions provide a better intuitive impression for what a topic is "about." Our approach is based on a language model of arbitrary length expressions, for which we develop a new methodology based on nested permutation tests to find significant phrases. We show that this method outperforms the more standard use of $\chi^2$ and likelihood ratio tests. We illustrate the topic presentations on corpora of scientific abstracts and news articles.


Strategic Positioning in Tactical Scenario Planning

arXiv.org Artificial Intelligence

Capability planning problems are pervasive throughout many areas of human interest with prominent examples found in defense and security. Planning provides a unique context for optimization that has not been explored in great detail and involves a number of interesting challenges which are distinct from traditional optimization research. Planning problems demand solutions that can satisfy a number of competing objectives on multiple scales related to robustness, adaptiveness, risk, etc. The scenario method is a key approach for planning. Scenarios can be defined for long-term as well as short-term plans. This paper introduces computational scenario-based planning problems and proposes ways to accommodate strategic positioning within the tactical planning domain. We demonstrate the methodology in a resource planning problem that is solved with a multi-objective evolutionary algorithm. Our discussion and results highlight the fact that scenario-based planning is naturally framed within a multi-objective setting. However, the conflicting objectives occur on different system levels rather than within a single system alone. This paper also contends that planning problems are of vital interest in many human endeavors and that Evolutionary Computation may be well positioned for this problem domain.


Computational Scenario-based Capability Planning

arXiv.org Artificial Intelligence

Scenarios are pen-pictures of plausible futures, used for strategic planning. The aim of this investigation is to expand the horizon of scenario-based planning through computational models that are able to aid the analyst in the planning process. The investigation builds upon the advances of Information and Communication Technology (ICT) to create a novel, flexible and customizable computational capability-based planning methodology that is practical and theoretically sound. We will show how evolutionary computation, in particular evolutionary multi-objective optimization, can play a central role - both as an optimizer and as a source for innovation.


A Novel Two-Staged Decision Support based Threat Evaluation and Weapon Assignment Algorithm, Asset-based Dynamic Weapon Scheduling using Artificial Intelligence Techinques

arXiv.org Artificial Intelligence

Surveillance control and reporting (SCR) system for air threats play an important role in the defense of a country. SCR system corresponds to air and ground situation management/processing along with information fusion, communication, coordination, simulation and other critical defense oriented tasks. Threat Evaluation and Weapon Assignment (TEWA) sits at the core of SCR system. In such a system, maximal or near maximal utilization of constrained resources is of extreme importance. Manual TEWA systems cannot provide optimality because of different limitations e.g.surface to air missile (SAM) can fire from a distance of 5Km, but manual TEWA systems are constrained by human vision range and other constraints. Current TEWA systems usually work on target-by-target basis using some type of greedy algorithm thus affecting the optimality of the solution and failing in multi-target scenario. his paper relates to a novel two-staged flexible dynamic decision support based optimal threat evaluation and weapon assignment algorithm for multi-target air-borne threats.


A Novel Two-Stage Dynamic Decision Support based Optimal Threat Evaluation and Defensive Resource Scheduling Algorithm for Multi Air-borne threats

arXiv.org Artificial Intelligence

This paper presents a novel two-stage flexible dynamic decision support based optimal threat evaluation and defensive resource scheduling algorithm for multi-target air-borne threats. The algorithm provides flexibility and optimality by swapping between two objective functions, i.e. the preferential and subtractive defense strategies as and when required. To further enhance the solution quality, it outlines and divides the critical parameters used in Threat Evaluation and Weapon Assignment (TEWA) into three broad categories (Triggering, Scheduling and Ranking parameters). Proposed algorithm uses a variant of many-to-many Stable Marriage Algorithm (SMA) to solve Threat Evaluation (TE) and Weapon Assignment (WA) problem. In TE stage, Threat Ranking and Threat-Asset pairing is done. Stage two is based on a new flexible dynamic weapon scheduling algorithm, allowing multiple engagements using shoot-look-shoot strategy, to compute near-optimal solution for a range of scenarios. Analysis part of this paper presents the strengths and weaknesses of the proposed algorithm over an alternative greedy algorithm as applied to different offline scenarios.


Compiling the Votes of a Subelectorate

AAAI Conferences

In many practical contexts where a number of agents have to find a common decision, the votes do not come all together at the same time. In such situations, we may want to preprocess the information given by the subelectorate (consisting of the voters who have expressed their votes) so as to ``compile'' the known votes for the time when the latecomers have expressed their votes. We study the amount of space necessary for such a compilation, as a function of the voting rule, the number of candidates, and the number of votes already known. We relate our results to existing work, especially on communication complexity.


Complexity of Unweighted Coalitional Manipulation Under Some Common Voting Rules

AAAI Conferences

Understanding the computational complexity of manipulation in elections is arguably the most central agenda in Computational Social Choice. One of the influential variations of the the problem involves a coalition of manipulators trying to make a favorite candidate win the election. Although the complexity of the problem is well-studied under the assumption that the voters are weighted, there were very few successful attempts to abandon this strong assumption. In this paper, we study the complexity of the unweighted coalitional manipulation problem (UCM) under several prominent voting rules. Our main result is that UCM is NP-complete under the maximin rule; this resolves an enigmatic open question. We then show that UCM is NP-complete under the ranked pairs rule, even with respect to a single manipulator. Furthermore, we provide an extreme hardness-of-approximation result for an optimization version of UCM under ranked pairs. Finally, we show that UCM under the Bucklin rule is in P.


Approximate inference on planar graphs using Loop Calculus and Belief Propagation

arXiv.org Artificial Intelligence

We introduce novel results for approximate inference on planar graphical models using the loop calculus framework. The loop calculus (Chertkov and Chernyak, 2006) allows to express the exact partition function of a graphical model as a finite sum of terms that can be evaluated once the belief propagation (BP) solution is known. In general, full summation over all correction terms is intractable. We develop an algorithm for the approach presented in (Certkov et al., 2008) which represents an efficient truncation scheme on planar graphs and a new representation of the series in terms of Pfaffians of matrices. We analyze the performance of the algorithm for the partition function approximation for models with binary variables and pairwise interactions on grids and other planar graphs. We study in detail both the loop series and the equivalent Pfaffian series and show that the first term of the Pfaffian series for the general, intractable planar model, can provide very accurate approximations. The algorithm outperforms previous truncation schemes of the loop series and is competitive with other state-of-the-art methods for approximate inference.


Reasoning about soft constraints and conditional preferences: complexity results and approximation techniques

arXiv.org Artificial Intelligence

Many real life optimization problems contain both hard and soft constraints, as well as qualitative conditional preferences. However, there is no single formalism to specify all three kinds of information. We therefore propose a framework, based on both CP-nets and soft constraints, that handles both hard and soft constraints as well as conditional preferences efficiently and uniformly. We study the complexity of testing the consistency of preference statements, and show how soft constraints can faithfully approximate the semantics of conditional preference statements whilst improving the computational complexity