Plotting

 Government


Learning from Candidate Labeling Sets

Neural Information Processing Systems

In many real world applications we do not have access to fully-labeled training data, but only to a list of possible labels. This is the case, e.g., when learning visual classifiers from images downloaded from the web, using just their text captions or tags as learning oracles. In general, these problems can be very difficult. However most of the time there exist different implicit sources of information, coming from the relations between instances and labels, which are usually dismissed. In this paper, we propose a semi-supervised framework to model this kind of problems. Each training sample is a bag containing multi-instances, associated with a set of candidate labeling vectors. Each labeling vector encodes the possible labels for the instances in the bag, with only one being fully correct. The use of the labeling vectors provides a principled way not to exclude any information. We propose a large margin discriminative formulation, and an efficient algorithm to solve it. Experiments conducted on artificial datasets and a real-world images and captions dataset show that our approach achieves performance comparable to SVM trained with the ground-truth labels, and outperforms other baselines.


Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Neural Information Processing Systems

In this paper, we propose a matrix-variate normal penalty with sparse inverse covariances to couple multiple tasks. Learning multiple (parametric) models can be viewed as estimating a matrix of parameters, where rows and columns of the matrix correspond to tasks and features, respectively. Following the matrix-variate normal density, we design a penalty that decomposes the full covariance of matrix elements into the Kronecker product of row covariance and column covariance, which characterizes both task relatedness and feature representation. Several recently proposed methods are variants of the special cases of this formulation. To address the overfitting issue and select meaningful task and feature structures, we include sparse covariance selection into our matrix-normal regularization via L-1 penalties on task and feature inverse covariances. We empirically study the proposed method and compare with related models in two real-world problems: detecting landmines in multiple fields and recognizing faces between different subjects. Experimental results show that the proposed framework provides an effective and flexible way to model various different structures of multiple tasks.


Probabilistic Belief Revision with Structural Constraints

Neural Information Processing Systems

Experts (human or computer) are often required to assess the probability of uncertain events. When a collection of experts independently assess events that are structurally interrelated, the resulting assessment may violate fundamental laws of probability. Such an assessment is termed incoherent. In this work we investigate how the problem of incoherence may be affected by allowing experts to specify likelihood models and then update their assessments based on the realization of a globally-observable random sequence.


Joint Analysis of Time-Evolving Binary Matrices and Associated Documents

Neural Information Processing Systems

We consider problems for which one has incomplete binary matrices that evolve with time (e.g., the votes of legislators on particular legislation, with each year characterized by a different such matrix). An objective of such analysis is to infer structure and inter-relationships underlying the matrices, here defined by latent features associated with each axis of the matrix. In addition, it is assumed that documents are available for the entities associated with at least one of the matrix axes. By jointly analyzing the matrices and documents, one may be used to inform the other within the analysis, and the model offers the opportunity to predict matrix values (e.g., votes) based only on an associated document (e.g., legislation). The research presented here merges two areas of machine-learning that have previously been investigated separately: incomplete-matrix analysis and topic modeling. The analysis is performed from a Bayesian perspective, with efficient inference constituted via Gibbs sampling. The framework is demonstrated by considering all voting data and available documents (legislation) during the 220-year lifetime of the United States Senate and House of Representatives.


Subgraph Detection Using Eigenvector L1 Norms

Neural Information Processing Systems

When working with network datasets, the theoretical framework of detection theory for Euclidean vector spaces no longer applies. Nevertheless, it is desirable to determine the detectability of small, anomalous graphs embedded into background networks with known statistical properties. Casting the problem of subgraph detection in a signal processing context, this article provides a framework and empirical results that elucidate a detection theory" for graph-valued data. Its focus is the detection of anomalies in unweighted, undirected graphs through L1 properties of the eigenvectors of the graphโ€™s so-called modularity matrix. This metric is observed to have relatively low variance for certain categories of randomly-generated graphs, and to reveal the presence of an anomalous subgraph with reasonable reliability when the anomaly is not well-correlated with stronger portions of the background graph. An analysis of subgraphs in real network datasets confirms the efficacy of this approach."


A GMBCG Galaxy Cluster Catalog of 55,424 Rich Clusters from SDSS DR7

arXiv.org Machine Learning

We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.


Descriptive-complexity based distance for fuzzy sets

arXiv.org Artificial Intelligence

A new distance function dist(A,B) for fuzzy sets A and B is introduced. It is based on the descriptive complexity, i.e., the number of bits (on average) that are needed to describe an element in the symmetric difference of the two sets. The distance gives the amount of additional information needed to describe any one of the two sets given the other. We prove its mathematical properties and perform pattern clustering on data based on this distance.


A Large-Deviation Analysis of the Maximum-Likelihood Learning of Markov Tree Structures

arXiv.org Machine Learning

The problem of maximum-likelihood (ML) estimation of discrete tree-structured distributions is considered. Chow and Liu established that ML-estimation reduces to the construction of a maximum-weight spanning tree using the empirical mutual information quantities as the edge weights. Using the theory of large-deviations, we analyze the exponent associated with the error probability of the event that the ML-estimate of the Markov tree structure differs from the true tree structure, given a set of independently drawn samples. By exploiting the fact that the output of ML-estimation is a tree, we establish that the error exponent is equal to the exponential rate of decay of a single dominant crossover event. We prove that in this dominant crossover event, a non-neighbor node pair replaces a true edge of the distribution that is along the path of edges in the true tree graph connecting the nodes in the non-neighbor pair. Using ideas from Euclidean information theory, we then analyze the scenario of ML-estimation in the very noisy learning regime and show that the error exponent can be approximated as a ratio, which is interpreted as the signal-to-noise ratio (SNR) for learning tree distributions. We show via numerical experiments that in this regime, our SNR approximation is accurate.


Learning Planar Ising Models

arXiv.org Artificial Intelligence

Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We demonstrate our method in some simulations and for the application of modeling senate voting records.


Persistence in the Political Economy of Conflict: The Case of the Afghan Drug Industry

AAAI Conferences

Links between licit and illicit economies fuel conflict in countries mired in irregular warfare. We argue that in Afghanistan, cultivating poppy and trading drugs bring stability to farmers who face the unintended consequences of haphazard development efforts while lacking alternative livelihoods and security necessary to access markets. Drug trafficking funds the crime-insurgency nexus and government corruption, in turn foiling attempts to establish a unified governance body. We show how individual rationality, market forces, corruption and opium stocks accumulated at different stages in the supply chain counteract the effects of poppy eradication. To that end, we use initial results from a multiagent model of the Afghan drug industry. We define physical, administrative, social and infrastructural environments in the simulation, and outline objectives and inputs for decision making and the structure of actor interactions.