Regional Government
An Overview of Empirical Natural Language Processing
Brill, Eric, Mooney, Raymond J.
In recent years, there has been a resurgence in research on empirical methods in natural language processing. These methods employ learning techniques to automatically extract linguistic knowledge from natural language corpora rather than require the system developer to manually encode the requisite knowledge. The current special issue reviews recent research in empirical methods in speech recognition, syntactic parsing, semantic processing, information extraction, and machine translation. This article presents an introduction to the series of specialized articles on these topics and attempts to describe and explain the growing interest in using learning methods to aid the development of natural language processing systems.
On the Other Hand ... Drawing the Line
Ford, Kenneth M., Hayes, Patrick J.
One of the best things about conferences, as we all know, is the opportunity they afford to consolidate old friendships and make new contacts. Clusters of con-versation provide a more valuable way to spend ones time than attending sessions. At the last national meeting we escaped from the celebrations of the recent victory of Deep Blue over the dreaded Kasparov, to find just such a group, already engaged in an animated discussion ....
On the Other Hand ... Cognitive Prostheses
Ford, Kenneth M., Glymour, Clark, Hayes, Patrick J.
With a power screwdriver the computer, the web, robots, the Europe the Hindu-Arabic system of anyone can drive the hardest screw; automation of manufacturing will all numbers and the arithmetic algorithms with a calculator, anyone can get the conspire to separate the rich and they made possible. One of the numbers right; with an aircraft anyone quick from the poor and slow, hurrying first books after the Bible printed with can fly to Paris; and with Deep the trend to an informed, skilled, moveable type was an Arithmetic. Blue, anyone can beat the world chess and employed elite living among an Even so, the algorithms were not easy champion. Cognitive prostheses undermine uninformed, unskilled, and unemployed and not widely disseminated. But both history and 17th century tradesman could not by giving non-experts equivalent an understanding of human-machine multiply.
Artificial Intelligence: Realizing the Ultimate Promises of Computing
Artificial intelligence (AI) is the key technology in many of today's novel applications, ranging from banking systems that detect attempted credit card fraud, to telephone systems that understand speech, to software systems that notice when you're having problems and offer appropriate advice. These technologies would not exist today without the sustained federal support of fundamental AI research over the past three decades.
Towards Flexible Teamwork
Many AI researchers are today striving to build agent teams for complex, dynamic multi-agent domains, with intended applications in arenas such as education, training, entertainment, information integration, and collective robotics. Unfortunately, uncertainties in these complex, dynamic domains obstruct coherent teamwork. In particular, team members often encounter differing, incomplete, and possibly inconsistent views of their environment. Furthermore, team members can unexpectedly fail in fulfilling responsibilities or discover unexpected opportunities. Highly flexible coordination and communication is key in addressing such uncertainties. Simply fitting individual agents with precomputed coordination plans will not do, for their inflexibility can cause severe failures in teamwork, and their domain-specificity hinders reusability. Our central hypothesis is that the key to such flexibility and reusability is providing agents with general models of teamwork. Agents exploit such models to autonomously reason about coordination and communication, providing requisite flexibility. Furthermore, the models enable reuse across domains, both saving implementation effort and enforcing consistency. This article presents one general, implemented model of teamwork, called STEAM. The basic building block of teamwork in STEAM is joint intentions (Cohen & Levesque, 1991b); teamwork in STEAM is based on agents' building up a (partial) hierarchy of joint intentions (this hierarchy is seen to parallel Grosz & Kraus's partial SharedPlans, 1996). Furthermore, in STEAM, team members monitor the team's and individual members' performance, reorganizing the team as necessary. Finally, decision-theoretic communication selectivity in STEAM ensures reduction in communication overheads of teamwork, with appropriate sensitivity to the environmental conditions. This article describes STEAM's application in three different complex domains, and presents detailed empirical results.
Worldwide Perspectives and Trends in Expert Systems: An Analysis Based on the Three World Congresses on Expert Systems
Some people believe that the expert system field is dead, yet others believe it is alive and well. To gain a better insight into these possible views, the first three world congresses on expert systems (which typically attract representatives from some 45-50 countries) are used to determine the health of the global expert system field in terms of applied technologies, applications, and management. This article highlights some of these findings.
Artificial Intelligence: What Works and What Doesn't?
AI has been well supported by government research and development dollars for decades now, and people are beginning to ask hard questions: What really works? What are the limits? What doesn't work as advertised? What isn't likely to work? What isn't affordable? This article holds a mirror up to the community, both to provide feedback and stimulate more self-assessment. The significant accomplishments and strengths of the field are highlighted. The research agenda, strategy, and heuristics are reviewed, and a change of course is recommend-ed to improve the field's ability to produce reusable and interoperable components.
Making an Impact: Artificial Intelligence at the Jet Propulsion Laboratory
Chien, Steve, DeCoste, Dennis, Doyle, Richard, Stolorz, Paul
The National Aeronautics and Space Administration (NASA) is being challenged to perform more frequent and intensive space-exploration missions at greatly reduced cost. Nowhere is this challenge more acute than among robotic planetary exploration missions that the Jet Propulsion Laboratory (JPL) conducts for NASA. This article describes recent and ongoing work on spacecraft autonomy and ground systems that builds on a legacy of existing success at JPL applying AI techniques to challenging computational problems in planning and scheduling, real-time monitoring and control, scientific data analysis, and design automation.
Third International Conference on Artificial Intelligence Planning Systems
The Third International Conference on Artificial Intelligence Planning Systems (AIPS-96) was held in Edinburgh, Scotland, from 29 to 31 May 1996. The main gathering of researchers in AI and planning and scheduling, the conference promoted the practical applications of planning technologies. Details of the conference papers and sessions are provided as well as information on the Defense Advanced Research Projects Agency -- Rome Laboratory Planning Initiative.
The 1996 AAAI Mobile Robot Competition and Exhibition
Kortenkamp, David, Nourbakhsh, Illah, Hinkle, David
The Fifth Annual AAAI Mobile Robot Competition and Exhibition was held in Portland, Oregon, in conjunction with the Thirteenth National Conference on Artificial Intelligence. The competition consisted of two events: (1) Office Navigation and (2) Clean Up the Tennis Court. The first event stressed navigation and planning. The second event stressed vision sensing and manipulation. In addition to the competition, there was a mobile robot exhibition in which teams demonstrated robot behaviors that did not fit into the competition tasks. The competition and exhibition were unqualified successes, with nearly 20 teams competing. The robot competition raised the standard for autonomous mobile robotics, demonstrating the intelligent integration of perception, deliberation, and action.