Energy
Scalable Transformer for PDE Surrogate Modeling
Transformer has shown state-of-the-art performance on various applications and has recently emerged as a promising tool for surrogate modeling of partial differential equations (PDEs). Despite the introduction of linear-complexity attention, applying Transformer to problems with a large number of grid points can be numerically unstable and computationally expensive. In this work, we propose Factorized Transformer (FactFormer), which is based on an axial factorized kernel integral. Concretely, we introduce a learnable projection operator that decomposes the input function into multiple sub-functions with one-dimensional domain. These sub-functions are then evaluated and used to compute the instance-based kernel with an axial factorized scheme. We showcase that the proposed model is able to simulate 2D Kolmogorov flow on a 256 256 grid and 3D smoke buoyancy on a 64 64 64 grid with good accuracy and efficiency. The proposed factorized scheme can serve as a computationally efficient low-rank surrogate for the full attention scheme when dealing with multi-dimensional problems.
Bayesian Optimization of Functions over Node Subsets in Graphs
We address the problem of optimizing over functions defined on node subsets in a graph. The optimization of such functions is often a non-trivial task given their combinatorial, black-box and expensive-to-evaluate nature. Although various algorithms have been introduced in the literature, most are either task-specific or computationally inefficient and only utilize information about the graph structure without considering the characteristics of the function. To address these limitations, we utilize Bayesian Optimization (BO), a sample-efficient black-box solver, and propose a novel framework for combinatorial optimization on graphs. More specifically, we map each k-node subset in the original graph to a node in a new combinatorial graph and adopt a local modeling approach to efficiently traverse the latter graph by progressively sampling its subgraphs using a recursive algorithm. Extensive experiments under both synthetic and real-world setups demonstrate the effectiveness of the proposed BO framework on various types of graphs and optimization tasks, where its behavior is analyzed in detail with ablation studies.
under the water A global multi-temporal satellite dataset for rapid flood mapping Maria Sdraka
Global flash floods, exacerbated by climate change, pose severe threats to human life, infrastructure, and the environment. Recent catastrophic events in Pakistan and New Zealand underscore the urgent need for precise flood mapping to guide restoration efforts, understand vulnerabilities, and prepare for future occurrences. While Synthetic Aperture Radar (SAR) remote sensing offers day-and-night, all-weather imaging capabilities, its application in deep learning for flood segmentation is limited by the lack of large annotated datasets. To address this, we introduce Kuro Siwo, a manually annotated multi-temporal dataset, spanning 43 flood events globally.
Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary Data
Few-shot learning is valuable in many real-world applications, but learning a generalizable model without overfitting to the few labeled datapoints is challenging. In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a training paradigm that assumes access to auxiliary data during few-shot learning in hopes of improving generalization. Previous works have proposed automated methods for mixing auxiliary and target data, but these methods typically scale linearly (or worse) with the number of auxiliary datasets, limiting their practicality. In this work we relate FLAD to the explore-exploit dilemma that is central to the multi-armed bandit setting and derive algorithms whose computational complexity is independent of the number of auxiliary datasets, allowing us to scale to 100 more auxiliary datasets than prior methods. We propose two algorithms - EXP3-FLAD and UCB1-FLAD - and compare them with prior FLAD methods that either explore or exploit, finding that the combination of exploration and exploitation is crucial. Through extensive experimentation we find that our methods outperform all pre-existing FLAD methods by 4% and lead to the first 3 billion parameter language models that outperform the 175 billion parameter GPT-3. Overall, our work suggests that the discovery of better, more efficient mixing strategies for FLAD may provide a viable path towards substantially improving generalization in few-shot learning. All of our code is available at github.com/alon-albalak/FLAD.
Conditional score-based diffusion models for Bayesian inference in infinite dimensions
Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions--the conditional denoising estimator--can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference.
Latent Neural Operator for Solving Forward and Inverse PDE Problems
Neural operators effectively solve PDE problems from data without knowing the explicit equations, which learn the map from the input sequences of observed samples to the predicted values. Most existing works build the model in the original geometric space, leading to high computational costs when the number of sample points is large. We present the Latent Neural Operator (LNO) solving PDEs in the latent space. In particular, we first propose Physics-Cross-Attention (PhCA) transforming representation from the geometric space to the latent space, then learn the operator in the latent space, and finally recover the real-world geometric space via the inverse PhCA map. Our model retains flexibility that can decode values in any position not limited to locations defined in the training set, and therefore can naturally perform interpolation and extrapolation tasks particularly useful for inverse problems. Moreover, the proposed LNO improves both prediction accuracy and computational efficiency. Experiments show that LNO reduces the GPU memory by 50%, speeds up training 1.8 times, and reaches state-of-the-art accuracy on four out of six benchmarks for forward problems and a benchmark for inverse problem.
A Max-Min Entropy Framework for Reinforcement Learning
In this paper, we propose a max-min entropy framework for reinforcement learning (RL) to overcome the limitation of the soft actor-critic (SAC) algorithm implementing the maximum entropy RL in model-free sample-based learning. Whereas the maximum entropy RL guides learning for policies to reach states with high entropy in the future, the proposed max-min entropy framework aims to learn to visit states with low entropy and maximize the entropy of these low-entropy states to promote better exploration. For general Markov decision processes (MDPs), an efficient algorithm is constructed under the proposed max-min entropy framework based on disentanglement of exploration and exploitation. Numerical results show that the proposed algorithm yields drastic performance improvement over the current state-of-the-art RL algorithms.
Constrained Sampling with Primal-Dual Langevin Monte Carlo
This work considers the problem of sampling from a probability distribution known up to a normalization constant while satisfying a set of statistical constraints specified by the expected values of general nonlinear functions. This problem finds applications in, e.g., Bayesian inference, where it can constrain moments to evaluate counterfactual scenarios or enforce desiderata such as prediction fairness. Methods developed to handle support constraints, such as those based on mirror maps, barriers, and penalties, are not suited for this task. This work therefore relies on gradient descent-ascent dynamics in Wasserstein space to put forward a discretetime primal-dual Langevin Monte Carlo algorithm (PD-LMC) that simultaneously constrains the target distribution and samples from it. We analyze the convergence of PD-LMC under standard assumptions on the target distribution and constraints, namely (strong) convexity and log-Sobolev inequalities. To do so, we bring classical optimization arguments for saddle-point algorithms to the geometry of Wasserstein space. We illustrate the relevance and effectiveness of PD-LMC in several applications.
Generative Forests
We focus on generative AI for a type of data that still represent one of the most prevalent form of data: tabular data. Our paper introduces two key contributions: a new powerful class of forest-based models fit for such tasks and a simple training algorithm with strong convergence guarantees in a boosting model that parallels that of the original weak / strong supervised learning setting. This algorithm can be implemented by a few tweaks to the most popular induction scheme for decision tree induction (i.e.