Not enough data to create a plot.
Try a different view from the menu above.
Energy
Appendix A Related Work A.1 Multimodal Large Language Models 3 A.2 Trustworthiness of LLMs
A.1 Multimodal Large Language Models Building on the foundational capabilities of groundbreaking Large Language Models (LLMs) such as GPT [3], PALM [6], Mistral [49], and LLama [108], which excel in language understanding and reasoning, recent innovations have integrated these models with other modalities (especially vision), leading to the development of Multimodal Large Language Models (MLLMs). These advanced MLLMs combine and process visual and textual data, demonstrating enhanced versatility in addressing both traditional vision tasks [21, 40, 42, 133] and complex multimodal challenges [34, 70, 136]. Among all MLLMs, proprietary models consistently perform well. OpenAI's GPT-4-Vision [82] pioneered this space by adeptly handling both text and image content. Anthropic's Claude 3 series [7] integrates advanced vision capabilities and multilingual support, enhancing its application across diverse cognitive and real-time tasks.
FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions
Material discovery is a critical area of research with the potential to revolutionize various fields, including carbon capture, renewable energy, and electronics. However, the immense scale of the chemical space makes it challenging to explore all possible materials experimentally. In this paper, we introduce FlowLLM, a novel generative model that combines large language models (LLMs) and Riemannian flow matching (RFM) to design novel crystalline materials. FlowLLM first finetunes an LLM to learn an effective base distribution of meta-stable crystals in a text representation. After converting to a graph representation, the RFM model takes samples from the LLM and iteratively refines the coordinates and lattice parameters. Our approach significantly outperforms state-of-the-art methods, increasing the generation rate of stable materials by over three times and increasing the rate for stable, unique, and novel crystals by 50% - a huge improvement on a difficult problem. Additionally, the crystals generated by FlowLLM are much closer to their relaxed state when compared with another leading model, significantly reducing post-hoc computational cost.
DEL: Discrete Element Learner for Learning 3D Particle Dynamics with Neural Rendering Jiaxu Wang 1 Jingkai Sun 1,2 Junhao He1
Learning-based simulators show great potential for simulating particle dynamics when 3D groundtruth is available, but per-particle correspondences are not always accessible. The development of neural rendering presents a new solution to this field to learn 3D dynamics from 2D images by inverse rendering. However, existing approaches still suffer from ill-posed natures resulting from the 2D to 3D uncertainty, for example, specific 2D images can correspond with various 3D particle distributions. To mitigate such uncertainty, we consider a conventional, mechanically interpretable framework as the physical priors and extend it to a learning-based version. In brief, we incorporate the learnable graph kernels into the classic Discrete Element Analysis (DEA) framework to implement a novel mechanics-integrated learning system. In this case, the graph network kernels are only used for approximating some specific mechanical operators in the DEA framework rather than the whole dynamics mapping. By integrating the strong physics priors, our methods can effectively learn the dynamics of various materials from the partial 2D observations in a unified manner. Experiments show that our approach outperforms other learned simulators by a large margin in this context and is robust to different renderers, fewer training samples, and fewer camera views.
Adaptive Important Region Selection with Reinforced Hierarchical Search for Dense Object Detection
Existing state-of-the-art dense object detection techniques tend to produce a large number of false positive detections on difficult images with complex scenes because they focus on ensuring a high recall. To improve the detection accuracy, we propose an Adaptive Important Region Selection (AIRS) framework guided by Evidential Q-learning coupled with a uniquely designed reward function. Inspired by human visual attention, our detection model conducts object search in a top-down, hierarchical fashion. It starts from the top of the hierarchy with the coarsest granularity and then identifies the potential patches likely to contain objects of interest. It then discards non-informative patches and progressively moves downward on the selected ones for a fine-grained search. The proposed evidential Q-learning systematically encodes epistemic uncertainty in its evidential-Q value to encourage the exploration of unknown patches, especially in the early phase of model training. In this way, the proposed model dynamically balances exploration-exploitation to cover both highly valuable and informative patches. Theoretical analysis and extensive experiments on multiple datasets demonstrate that our proposed framework outperforms the SOTA models.
Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss
At the core of 3D PTV is the dual-frame fluid motion estimation algorithm, which tracks particles across two consecutive frames. Recently, deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation; however, they exploit a supervised scheme that heavily depends on large volumes of labeled data. In this paper, we introduce a new method that is completely self-supervised and notably outperforms its supervised counterparts while requiring only 1% of the training samples (without labels) used by previous methods. Our method features a novel zero-divergence loss that is specific to the domain of turbulent flow. Inspired by the success of splat operation in high-dimensional filtering and random fields, we propose a splat-based implementation for this loss which is both efficient and effective. The self-supervised nature of our method naturally supports test-time optimization, leading to the development of a tailored Dynamic Velocimetry Enhancer (DVE) module. We demonstrate that strong cross-domain robustness is achieved through test-time optimization on unseen leave-one-out synthetic domains and real physical/biological domains.
Biologically Inspired Learning Model for Instructed Vision
As part of the effort to understand how the brain learns, ongoing research seeks to combine biological knowledge with current artificial intelligence (AI) modeling in an attempt to find an efficient biologically plausible learning scheme. Current models often use a cortical-like combination of bottom-up (BU) and top-down (TD) processing, where the TD part carries feedback signals for learning. However, in the visual cortex, the TD pathway plays a second major role in visual attention, by guiding the visual process toward locations and tasks of interest. A biological model should therefore integrate both learning and visual guidance. We introduce a model that uses a cortical-like combination of BU and TD processing that naturally integrates the two major functions of the TD stream. This integration is achieved through an appropriate connectivity pattern between the BU and TD streams, a novel processing cycle that uses the TD stream twice, and a'Counter-Hebb' learning mechanism that operates across both streams. We show that the'Counter-Hebb' mechanism can provide an exact backpropagation synaptic modification. Additionally, our model can effectively guide the visual stream to perform a task of interest, achieving competitive performance on standard multi-task learning benchmarks compared to AI models. The successful combination of learning and visual guidance could provide a new view on combining BU and TD processing in human vision and suggests possible directions for both biologically plausible models and artificial instructed models, such as vision-language models (VLMs).
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning Ruben Ohana 1,2,, Lucas Meyer 1, Rudy Morel
Machine learning based surrogate models offer researchers powerful tools for accelerating simulation-based workflows. However, as standard datasets in this space often cover small classes of physical behavior, it can be difficult to evaluate the efficacy of new approaches. To address this gap, we introduce the Well: a large-scale collection of datasets containing numerical simulations of a wide variety of spatiotemporal physical systems. The Well draws from domain experts and numerical software developers to provide 15TB of data across 16 datasets covering diverse domains such as biological systems, fluid dynamics, acoustic scattering, as well as magneto-hydrodynamic simulations of extra-galactic fluids or supernova explosions. These datasets can be used individually or as part of a broader benchmark suite. To facilitate usage of the Well, we provide a unified PyTorch interface for training and evaluating models. We demonstrate the function of this library by introducing example baselines that highlight the new challenges posed by the complex dynamics of the Well.
Nonconvex Low-Rank Tensor Completion from Noisy Data
Changxiao Cai, Gen Li, H. Vincent Poor, Yuxin Chen
We study a completion problem of broad practical interest: the reconstruction of a low-rank symmetric tensor from highly incomplete and randomly corrupted observations of its entries. While a variety of prior work has been dedicated to this problem, prior algorithms either are computationally too expensive for largescale applications, or come with sub-optimal statistical guarantees. Focusing on "incoherent" and well-conditioned tensors of a constant CP rank, we propose a two-stage nonconvex algorithm -- (vanilla) gradient descent following a rough initialization -- that achieves the best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes the tensor and retrieves individual tensor factors within nearly linear time, while at the same time enjoying near-optimal statistical guarantees (i.e.
ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction Supplementary Material
ChaosBench is published under the open source GNU General Public License. Further development and potential updates discussed in the limitations section will take place on the ChaosBench page. Furthermore, we are committed to maintaining and preserving the ChaosBench benchmark. Ongoing maintenance also includes tracking and resolving issues identified by the broader community after release. User feedback will be closely monitored via the GitHub issue tracker. All assets are hosted on GitHub and HuggingFace, which guarantees reliable and stable storage. Dataset: All our dataset, present and future (e.g., with more years, multi-resolution support, etc) are available at https://huggingface.co/datasets/LEAP/ChaosBench.