Plotting

 Power Industry


The Download: nuclear-powered AI, and a short history of creativity

MIT Technology Review

In the AI arms race, all the major players say they want to go nuclear. Over the past year, the likes of Meta, Amazon, Microsoft, and Google have sent out a flurry of announcements related to nuclear energy. Some are about agreements to purchase power from existing plants, while others are about investments looking to boost unproven advanced technologies. These somewhat unlikely partnerships could be a win for both the nuclear power industry and large tech companies. Tech giants need guaranteed sources of energy, and many are looking for low-emissions ones to hit their climate goals.


Scalable Constrained Policy Optimization for Safe Multi-agent Reinforcement Learning

Neural Information Processing Systems

A challenging problem in seeking to bring multi-agent reinforcement learning (MARL) techniques into real-world applications, such as autonomous driving and drone swarms, is how to control multiple agents safely and cooperatively to accomplish tasks.


Anytime-Competitive Reinforcement Learning with Policy Prior

Neural Information Processing Systems

This paper studies the problem of Anytime-Competitive Markov Decision Process (A-CMDP). Existing works on Constrained Markov Decision Processes (CMDPs) aim to optimize the expected reward while constraining the expected cost over random dynamics, but the cost in a specific episode can still be unsatisfactorily high. In contrast, the goal of A-CMDP is to optimize the expected reward while guaranteeing a bounded cost in each round of any episode against a policy prior. We propose a new algorithm, called Anytime-Competitive Reinforcement Learning (ACRL), which provably guarantees the anytime cost constraints. The regret analysis shows the policy asymptotically matches the optimal reward achievable under the anytime competitive constraints. Experiments on the application of carbonintelligent computing verify the reward performance and cost constraint guarantee of ACRL.


Anytime-Competitive Reinforcement Learning with Policy Prior

Neural Information Processing Systems

This paper studies the problem of Anytime-Competitive Markov Decision Process (A-CMDP). Existing works on Constrained Markov Decision Processes (CMDPs) aim to optimize the expected reward while constraining the expected cost over random dynamics, but the cost in a specific episode can still be unsatisfactorily high. In contrast, the goal of A-CMDP is to optimize the expected reward while guaranteeing a bounded cost in each round of any episode against a policy prior. We propose a new algorithm, called Anytime-Competitive Reinforcement Learning (ACRL), which provably guarantees the anytime cost constraints. The regret analysis shows the policy asymptotically matches the optimal reward achievable under the anytime competitive constraints. Experiments on the application of carbonintelligent computing verify the reward performance and cost constraint guarantee of ACRL.


SustainGym: Reinforcement Learning Environments for Sustainable Energy Systems

Neural Information Processing Systems

The lack of standardized benchmarks for reinforcement learning (RL) in sustainability applications has made it difficult to both track progress on specific domains and identify bottlenecks for researchers to focus their efforts. In this paper, we present SustainGym, a suite of five environments designed to test the performance of RL algorithms on realistic sustainable energy system tasks, ranging from electric vehicle charging to carbon-aware data center job scheduling. The environments test RL algorithms under realistic distribution shifts as well as in multi-agent settings. We show that standard off-the-shelf RL algorithms leave significant room for improving performance and highlight the challenges ahead for introducing RL to real-world sustainability tasks.


IMP-MARL: a Suite of Environments for Large-scale Infrastructure Management Planning via MARL

Neural Information Processing Systems

We introduce IMP-MARL, an open-source suite of multi-agent reinforcement learning (MARL) environments for large-scale Infrastructure Management Planning (IMP), offering a platform for benchmarking the scalability of cooperative MARL methods in real-world engineering applications. In IMP, a multi-component engineering system is subject to a risk of failure due to its components' damage condition. Specifically, each agent plans inspections and repairs for a specific system component, aiming to minimise maintenance costs while cooperating to minimise system failure risk. With IMP-MARL, we release several environments including one related to offshore wind structural systems, in an effort to meet today's needs to improve management strategies to support sustainable and reliable energy systems. Supported by IMP practical engineering environments featuring up to 100 agents, we conduct a benchmark campaign, where the scalability and performance of state-of-the-art cooperative MARL methods are compared against expert-based heuristic policies. The results reveal that centralised training with decentralised execution methods scale better with the number of agents than fully centralised or decentralised RL approaches, while also outperforming expert-based heuristic policies in most IMP environments. Based on our findings, we additionally outline remaining cooperation and scalability challenges that future MARL methods should still address. Through IMP-MARL, we encourage the implementation of new environments and the further development of MARL methods.


An NLP Benchmark Dataset for Assessing Corporate Climate Policy Engagement

Neural Information Processing Systems

As societal awareness of climate change grows, corporate climate policy engagements are attracting attention. We propose a dataset to estimate corporate climate policy engagement from various PDF-formatted documents. Our dataset comes from LobbyMap (a platform operated by global think tank InfluenceMap) that provides engagement categories and stances on the documents. To convert the LobbyMap data into the structured dataset, we developed a pipeline using text extraction and OCR. Our contributions are: (i) Building an NLP dataset including 10K documents on corporate climate policy engagement.


Trump signs executive orders to spur US 'nuclear energy renaissance'

The Guardian > Energy

Donald Trump signed a series of executive orders on Friday intended to spur a "nuclear energy renaissance" through the construction of new reactors he said would satisfy the electricity demands of data centers for artificial intelligence and other emerging industries. The orders represented the president's latest foray into the policy underlying America's electricity supply. Trump declared a national energy emergency on his first day in office over and moved to undo a ban implemented by Joe Biden on new natural gas export terminals and expand oil and gas drilling in Alaska. Nuclear does not carry oil and gas's carbon emissions, but produces radioactive waste that the United States lacks a facility to permanently store. Some environmental groups have safety concerns over the reactors and their supply chain. Trump signed four orders intended to speed up the approval of nuclear reactors for defense and AI purposes, reform the Nuclear Regulatory Commission with the goal of quadrupling production of electricity over the next 25 years, revamp the regulatory process to have three experimental reactors operating by 4 July 2026 and boost investment in the technology's industrial base.


The Download: Google's AI mission, and America's reliance on natural gas

MIT Technology Review

If you want to know where AI is headed, this year's Google I/O has you covered. The company's annual showcase of next-gen products, which kicked off yesterday, has all of the pomp and pizzazz, the sizzle reels and celebrity walk-ons, that you'd expect from a multimillion dollar marketing event. But it also shows us just how fast this still-experimental technology is being subsumed into a line-up designed to sell phones and subscription tiers. Never before have I seen this thing we call artificial intelligence appear so normal. Last December, Meta announced plans to build a massive 10 billion data center for training its artificial intelligence models in rural northeast Louisiana.