Educational Setting
A Knowledge-Based Model of Geometry Learning
Towell, Geoffrey, Lehrer, Richard
We propose a model of the development of geometric reasoning in children that explicitly involves learning. The model uses a neural network that is initialized with an understanding of geometry similar to that of second-grade children. Through the presentation of a series of examples, the model is shown to develop an understanding of geometry similar to that of fifth-grade children who were trained using similar materials.
Parameterising Feature Sensitive Cell Formation in Linsker Networks in the Auditory System
Walton, Lance C., Bisset, David L.
This paper examines and extends the work of Linsker (1986) on self organising feature detectors. Linsker concentrates on the visual processing system, but infers that the weak assumptions made will allow the model to be used in the processing of other sensory information. This claim is examined here, with special attention paid to the auditory system, where there is much lower connectivity and therefore more statistical variability. Online training is utilised, to obtain an idea of training times. These are then compared to the time available to prenatal mammals for the formation of feature sensitive cells. 1 INTRODUCTION Within the last thirty years, a great deal of research has been carried out in an attempt to understand the development of cells in the pathways between the sensory apparatus and the cortex in mammals. For example, theories for the development of feature detectors were forwarded by Nass and Cooper (1975), by Grossberg (1976) and more recently Obermayer et al (1990). Hubel and Wiesel (1961) established the existence of several different types of feature sensitive cell in the visual cortex of cats. Various subsequent experiments have 1007 1008 Walton and Bisset shown that a considerable amount of development takes place before birth (i.e.
Automatic Learning Rate Maximization by On-Line Estimation of the Hessian's Eigenvectors
LeCun, Yann, Simard, Patrice Y., Pearlmutter, Barak
We propose a very simple, and well principled way of computing the optimal step size in gradient descent algorithms. The online version is very efficient computationally, and is applicable to large backpropagation networks trained on large data sets. The main ingredient is a technique for estimating the principal eigenvalue(s) and eigenvector(s) of the objective function's second derivative matrix (Hessian), which does not require to even calculate the Hessian. Several other applications of this technique are proposed for speeding up learning, or for eliminating useless parameters. 1 INTRODUCTION Choosing the appropriate learning rate, or step size, in a gradient descent procedure such as backpropagation, is simultaneously one of the most crucial and expertintensive part of neural-network learning. We propose a method for computing the best step size which is both well-principled, simple, very cheap computationally, and, most of all, applicable to online training with large networks and data sets.
Green's Function Method for Fast On-Line Learning Algorithm of Recurrent Neural Networks
Sun, Guo-Zheng, Chen, Hsing-Hen, Lee, Yee-Chun
The two well known learning algorithms of recurrent neural networks are the back-propagation (Rumelhart & el al., Werbos) and the forward propagation (Williamsand Zipser). The main drawback of back-propagation is its off-line backward path in time for error cumulation. This violates the online requirement in many practical applications. Although the forward propagation algorithmcan be used in an online manner, the annoying drawback is the heavy computation load required to update the high dimensional sensitivity matrix(0(fir) operations for each time step). Therefore, to develop a fast forward algorithm is a challenging task.
Improving the Performance of Radial Basis Function Networks by Learning Center Locations
Wettschereck, Dietrich, Dietterich, Thomas
Three methods for improving the performance of (gaussian) radial basis function (RBF) networks were tested on the NETtaik task. In RBF, a new example is classified by computing its Euclidean distance to a set of centers chosen by unsupervised methods. The application of supervised learning to learn a non-Euclidean distance metric was found to reduce the error rate of RBF networks, while supervised learning of each center's variance resulted in inferior performance. The best improvement in accuracy was achieved by networks called generalized radial basis function (GRBF) networks. In GRBF, the center locations are determined by supervised learning. After training on 1000 words, RBF classifies 56.5% of letters correct, while GRBF scores 73.4% letters correct (on a separate test set). From these and other experiments, we conclude that supervised learning of center locations can be very important for radial basis function learning.
Improving the Performance of Radial Basis Function Networks by Learning Center Locations
Wettschereck, Dietrich, Dietterich, Thomas
Three methods for improving the performance of (gaussian) radial basis function (RBF) networks were tested on the NETtaik task. In RBF, a new example is classified by computing its Euclidean distance to a set of centers chosen by unsupervised methods. The application of supervised learning to learn a non-Euclidean distance metric was found to reduce the error rate of RBF networks, while supervised learning of each center's variance resulted in inferior performance. The best improvement in accuracy was achieved by networks called generalized radial basis function (GRBF) networks. In GRBF, the center locations are determined by supervised learning. After training on 1000 words, RBF classifies 56.5% of letters correct, while GRBF scores 73.4% letters correct (on a separate test set). From these and other experiments, we conclude that supervised learning of center locations can be very important for radial basis function learning.
Green's Function Method for Fast On-Line Learning Algorithm of Recurrent Neural Networks
Sun, Guo-Zheng, Chen, Hsing-Hen, Lee, Yee-Chun
The two well known learning algorithms of recurrent neural networks are the back-propagation (Rumelhart & el al., Werbos) and the forward propagation (Williams and Zipser). The main drawback of back-propagation is its off-line backward path in time for error cumulation. This violates the online requirement in many practical applications. Although the forward propagation algorithm can be used in an online manner, the annoying drawback is the heavy computation load required to update the high dimensional sensitivity matrix (0( fir) operations for each time step). Therefore, to develop a fast forward algorithm is a challenging task.
Improving the Performance of Radial Basis Function Networks by Learning Center Locations
Wettschereck, Dietrich, Dietterich, Thomas
Three methods for improving the performance of (gaussian) radial basis function (RBF) networks were tested on the NETtaik task. In RBF, a new example is classified by computing its Euclidean distance to a set of centers chosen by unsupervised methods. The application of supervised learning to learn a non-Euclidean distance metric was found to reduce the error rate of RBF networks, while supervised learning of each center's variance resultedin inferior performance. The best improvement in accuracy was achieved by networks called generalized radial basis function (GRBF) networks. In GRBF, the center locations are determined by supervised learning. After training on 1000 words, RBF classifies 56.5% of letters correct, while GRBF scores 73.4% letters correct (on a separate test set). From these and other experiments, we conclude that supervised learning of center locations can be very important for radial basis function learning.