Goto

Collaborating Authors

 Curriculum


Stress-Testing Capability Elicitation With Password-Locked Models

Neural Information Processing Systems

To determine the safety of large language models (LLMs), AI developers must be able to assess their dangerous capabilities. But simple prompting strategies often fail to elicit an LLM's full capabilities. One way to elicit capabilities more robustly is to fine-tune the LLM to complete the task. In this paper, we investigate the conditions under which fine-tuning-based elicitation suffices to elicit capabilities. To do this, we introduce password-locked models, LLMs fine-tuned such that some of their capabilities are deliberately hidden.


MathAgent: Leveraging a Mixture-of-Math-Agent Framework for Real-World Multimodal Mathematical Error Detection

arXiv.org Artificial Intelligence

Mathematical error detection in educational settings presents a significant challenge for Multimodal Large Language Models (MLLMs), requiring a sophisticated understanding of both visual and textual mathematical content along with complex reasoning capabilities. Though effective in mathematical problem-solving, MLLMs often struggle with the nuanced task of identifying and categorizing student errors in multimodal mathematical contexts. Therefore, we introduce MathAgent, a novel Mixture-of-Math-Agent framework designed specifically to address these challenges. Our approach decomposes error detection into three phases, each handled by a specialized agent: an image-text consistency validator, a visual semantic interpreter, and an integrative error analyzer. This architecture enables more accurate processing of mathematical content by explicitly modeling relationships between multimodal problems and student solution steps. We evaluate MathAgent on real-world educational data, demonstrating approximately 5% higher accuracy in error step identification and 3% improvement in error categorization compared to baseline models. Besides, MathAgent has been successfully deployed in an educational platform that has served over one million K-12 students, achieving nearly 90% student satisfaction while generating significant cost savings by reducing manual error detection.


Sun-Shine: A Large Language Model for Tibetan Culture

arXiv.org Artificial Intelligence

Tibetan, a minority language in China, features a highly intricate grammatical structure, characterized by four verb tenses and a tense system with frequent irregularities, contributing to its extensive inflectional diversity. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in many domains. Despite the success in other fields, current LLMs often fall short in catering to the needs of domain experts like Tibetans, and the potential of LLMs for Tibetan culture is under-explored. The intrinsic reasons are the immense and intricate nature of Tibetan culture as well as the necessity for higher granularity and richness in knowledge. Simultaneously, the complexity and uniqueness of its grammatical structure, coupled with its status as a minority ethnic language, contribute to data scarcity, which remains a fundamental challenge. To alleviate these issues, we introduce Llama-Sunshine (Sun-Shine), the first large language model for Tibetan culture, which is expert in various Tibetan language processing tasks. Sun-Shine incorporates state-of-the-art model architectures optimized for Tibetan's linguistic features. We also propose TIB-STC, a comprehensive dataset comprising diverse Tibetan texts such as literature, religious scripts, news, and conversational data, which is also the first large-scale dataset for Tibetan culture. Though comprehensive experiments, Sun-Shine not only demonstrates a higher level of knowledge expertise for Tibetan culture but also gains preliminary embodied intelligence capabilities in Tibetan language processing tasks, like language modeling, text classification, machine translation, and syntactic analysis. Moreover, it excels in low-resource scenarios, showcasing strong generalization capabilities.


Teaching Multiple Concepts to a Forgetful Learner

Neural Information Processing Systems

How can we help a forgetful learner learn multiple concepts within a limited time frame? While there have been extensive studies in designing optimal schedules for teaching a single concept given a learner's memory model, existing approaches for teaching multiple concepts are typically based on heuristic scheduling techniques without theoretical guarantees. In this paper, we look at the problem from the perspective of discrete optimization and introduce a novel algorithmic framework for teaching multiple concepts with strong performance guarantees. Our framework is both generic, allowing the design of teaching schedules for different memory models, and also interactive, allowing the teacher to adapt the schedule to the underlying forgetting mechanisms of the learner. Furthermore, for a well-known memory model, we are able to identify a regime of model parameters where our framework is guaranteed to achieve high performance. We perform extensive evaluations using simulations along with real user studies in two concrete applications: (i) an educational app for online vocabulary teaching; and (ii) an app for teaching novices how to recognize animal species from images. Our results demonstrate the effectiveness of our algorithm compared to popular heuristic approaches.


Synthesizing Tasks for Block-based Programming Umair Z. Ahmed 1 Maria Christakis 2 Nigel Fernandez

Neural Information Processing Systems

Block-based visual programming environments play a critical role in introducing computing concepts to K-12 students. One of the key pedagogical challenges in these environments is in designing new practice tasks for a student that match a desired level of difficulty and exercise specific programming concepts.


Significant advancements in large language models

Neural Information Processing Systems

Large language models have demonstrated remarkable capabilities but their performance is heavily reliant on effective prompt engineering. Automatic prompt optimization (APO) methods are designed to automate this and can be broadly categorized into those targeting instructions (instruction optimization, IO) vs. those targeting exemplars (exemplar optimization, EO). Despite their shared objective, these have evolved rather independently, with IO receiving more research attention recently. This paper seeks to bridge this gap by comprehensively comparing the performance of representative IO and EO techniques both isolation and combination on a diverse set of challenging tasks. Our findings reveal that intelligently reusing model-generated input-output pairs obtained from evaluating prompts on the validation set as exemplars, consistently improves performance on top of IO methods but is currently under-investigated. We also find that despite the recent focus on IO, how we select exemplars can outweigh how we optimize instructions, with EO strategies as simple as random search outperforming state-of-the-art IO methods with seed instructions without any optimization. Moreover, we observe a synergy between EO and IO, with optimal combinations surpassing the individual contributions. We conclude that studying exemplar optimization both as a standalone method and its optimal combination with instruction optimization remain a crucial aspect of APO and deserve greater consideration in future research, even in the era of highly capable instruction-following models.


Teaching Language Model Agents How to Self-Improve

Neural Information Processing Systems

A central piece in enabling intelligent agentic behavior in foundation models is to make them capable of introspecting upon their behavior, reasoning, and correcting their mistakes as more computation or interaction is available. Even the strongest proprietary large language models (LLMs) do not quite exhibit the ability of continually improving their responses sequentially. In this paper, we develop RISE: Recursive IntroSpEction, an approach for fine-tuning LLMs to introduce this capability, despite prior work hypothesizing that this capability may not be possible to attain. Our approach prescribes an iterative fine-tuning procedure, which attempts to teach the model how to alter its response after having executed previously unsuccessful attempts to solve a hard test-time problem, with optionally additional environment feedback. RISE poses fine-tuning for a singleturn prompt as solving a multi-turn Markov decision process (MDP), where the initial state is the prompt. Inspired by principles in online imitation and offline reinforcement learning, we propose strategies for multi-turn data collection and training so as to imbue an LLM with the capability to recursively detect and correct its previous mistakes in subsequent iterations. Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on reasoning tasks, outperforming several single-turn strategies given an equal amount of inference-time computation. We also find that RISE scales well, often attaining larger benefits with more capable models, without disrupting one-turn abilities as a result of expressing more complex distributions.


Robot Talk Episode 112 – Getting creative with robotics, with Vali Lalioti

Robohub

Vali Lalioti is a pioneering designer, computer scientist and innovator. She has a PhD in Computer Science, an MRes in Design and an MBA, and extensive international leadership, research and innovation experience in Silicon Valley, Africa, China, Japan and Europe. Vali is passionate about how technology interacts with society and talks globally on women in tech, art and technology education and her research in societal applications for well-being, healthy ageing and art. She developed the first ever BBC Augmented Reality production in 2003 and has introduced the UK's first Creative Robotics University Degrees.


Bridging Technology and Humanities: Evaluating the Impact of Large Language Models on Social Sciences Research with DeepSeek-R1

arXiv.org Artificial Intelligence

In recent years, the development of Large Language Models (LLMs) has made significant breakthroughs in the field of natural language processing and has gradually been applied to the field of humanities and social sciences research. LLMs have a wide range of application value in the field of humanities and social sciences because of its strong text understanding, generation and reasoning capabilities. In humanities and social sciences research, LLMs can analyze large-scale text data and make inferences. This article analyzes the large language model DeepSeek-R1 from seven aspects: low-resource language translation, educational question-answering, student writing improvement in higher education, logical reasoning, educational measurement and psychometrics, public health policy analysis, and art education.Then we compare the answers given by DeepSeek-R1 in the seven aspects with the answers given by o1-preview. DeepSeek-R1 performs well in the humanities and social sciences, answering most questions correctly and logically, and can give reasonable analysis processes and explanations. Compared with o1-preview, it can automatically generate reasoning processes and provide more detailed explanations, which is suitable for beginners or people who need to have a detailed understanding of this knowledge, while o1-preview is more suitable for quick reading. Through analysis, it is found that LLM has broad application potential in the field of humanities and social sciences, and shows great advantages in improving text analysis efficiency, language communication and other fields. LLM's powerful language understanding and generation capabilities enable it to deeply explore complex problems in the field of humanities and social sciences, and provide innovative tools for academic research and practical applications.


Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning Yiming Wang α Pei Zhang β, γ Baosong Yang β, Derek F. Wong

Neural Information Processing Systems

Real-world data deviating from the independent and identically distributed (i.i.d.) assumption of in-distribution training data poses security threats to deep networks, thus advancing out-of-distribution (OOD) detection algorithms. Detection methods in generative language models (GLMs) mainly focus on uncertainty estimation and embedding distance measurement, with the latter proven to be most effective in traditional linguistic tasks like summarization and translation. However, another complex generative scenario mathematical reasoning poses significant challenges to embedding-based methods due to its high-density feature of output spaces, but this feature causes larger discrepancies in the embedding shift trajectory between different samples in latent spaces. Hence, we propose a trajectory-based method TV Score, which uses trajectory volatility for OOD detection in mathematical reasoning. Experiments show that our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios and can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.