Goto

Collaborating Authors

 Curriculum


Scaling Sign Language Translation

Neural Information Processing Systems

Sign language translation (SLT) addresses the problem of translating information from a sign language in video to a spoken language in text. Existing studies, while showing progress, are often limited to narrow domains and/or few sign languages and struggle with open-domain tasks. In this paper, we push forward the frontier of SLT by scaling pretraining data, model size, and number of translation directions. We perform large-scale SLT pretraining on different data including 1) noisy multilingual YouTube SLT data, 2) parallel text corpora, and 3) SLT data augmented by translating video captions to other languages with off-the-shelf machine translation models. We unify different pretraining tasks with task-specific prompts under the encoder-decoder architecture, and initialize the SLT model with pretrained (m/By)T5 models across model sizes. SLT pretraining results on How2Sign and FLEURS-ASL#0 (ASL to 42 spoken languages) demonstrate the significance of data/model scaling and cross-lingual cross-modal transfer, as well as the feasibility of zero-shot SLT.


Improving Gloss-free Sign Language Translation by Reducing Representation Density Wenxiang Jiao

Neural Information Processing Systems

Gloss-free sign language translation (SLT) aims to develop well-performing SLT systems with no requirement for the costly gloss annotations, but currently still lags behind gloss-based approaches significantly. In this paper, we identify a representation density problem that could be a bottleneck in restricting the performance of gloss-free SLT. Specifically, the representation density problem describes that the visual representations of semantically distinct sign gestures tend to be closely packed together in feature space, which makes gloss-free methods struggle with distinguishing different sign gestures and suffer from a sharp performance drop. To address the representation density problem, we introduce a simple but effective contrastive learning strategy, namely SignCL, which encourages gloss-free models to learn more discriminative feature representation in a self-supervised manner. Our experiments demonstrate that the proposed SignCL can significantly reduce the representation density and improve performance across various translation frameworks. Specifically, SignCL achieves a significant improvement in BLEU score for the Sign Language Transformer and GFSLT-VLP on the CSL-Daily dataset by 39% and 46%, respectively, without any increase of model parameters. Compared to Sign2GPT, a state-of-the-art method based on large-scale pre-trained vision and language models, SignCL achieves better performance with only 35% of its parameters.


Reinforcing LLM Agents via Policy Optimization with Action Decomposition, Jun Wang

Neural Information Processing Systems

Language models as intelligent agents push the boundaries of sequential decisionmaking agents but struggle with limited knowledge of environmental dynamics and exponentially huge action space. Recent efforts like GLAM and TWOSOME manually constrain the action space to a restricted subset and employ reinforcement learning to align agents' knowledge with specific environments. However, they overlook fine-grained credit assignments for intra-action tokens, which is essential for efficient language agent optimization, and rely on human's prior knowledge to restrict action space. This paper proposes decomposing language agent optimization from the action level to the token level, offering finer supervision for each intra-action token and manageable optimization complexity in environments with unrestricted action spaces. Beginning with the simplification of flattening all actions, we theoretically explore the discrepancies between action-level optimization and this naive token-level optimization. We then derive the Bellman backup with Action Decomposition (BAD) to integrate credit assignments for both intra-action and inter-action tokens, effectively eliminating the discrepancies. Implementing BAD within the PPO algorithm, we introduce Policy Optimization with Action Decomposition (POAD). POAD benefits from a finer-grained credit assignment process and lower optimization complexity, leading to enhanced learning efficiency and generalization abilities in aligning language agents with interactive environments.


Episodic Memory in Lifelong Language Learning

Neural Information Processing Systems

We introduce a lifelong language learning setup where a model needs to learn from a stream of text examples without any dataset identifier. We propose an episodic memory model that performs sparse experience replay and local adaptation to mitigate catastrophic forgetting in this setup. Experiments on text classification and question answering demonstrate the complementary benefits of sparse experience replay and local adaptation to allow the model to continuously learn from new datasets. We also show that the space complexity of the episodic memory module can be reduced significantly ( 50-90%) by randomly choosing which examples to store in memory with a minimal decrease in performance. We consider an episodic memory component as a crucial building block of general linguistic intelligence and see our model as a first step in that direction.


The best language learning apps for 2025

Engadget

There's a good chance learning a new language is one of your New Year's resolutions, unless you're hoping Google Translate will be enough for your next international adventure. Either way, you'll need a reliable method to guide you through speaking and understanding the foreign language of your choosing. Fortunately, we're no longer confined to flashcards and textbooks as you can learn using your phone from the comfort of your couch. Many of the best language learning apps today offer a multi-tier approach, with AI-powered conversations, extensive vocab libraries and even podcasts you can listen to to help you master your target language. Whether you're just starting because you're just trying to understand what Bad Bunny means when he says "un verano en Nueva Yol," or you want to brush up on your Korean before that planned vacation, there's a language learning app to suit your needs.


Learn 14 languages with Babbel at this special StackSocial price

Popular Science

Sometimes, all that's stopping you is a language barrier. If you're ready to tear that down and interact with more of the world, Babbel is ready to serve as your passport. Imagine learning the entirety of one semester of Spanish in just 15 hours. Researchers from City University of New York recently assessed Babbel's Spanish courses and discovered that the novice learners "acquired knowledge equivalent to one Spanish semester in 15h." That impressive distinction is easy to believe once you see Babbel's process.


Large Language Models Must Be Taught to Know What They Don't Know

Neural Information Processing Systems

When using large language models (LLMs) in high-stakes applications, we need to know when we can trust their predictions. Some works argue that prompting highperformance LLMs is sufficient to produce calibrated uncertainties, while others introduce sampling methods that can be prohibitively expensive. In this work, we first argue that prompting on its own is insufficient to achieve good calibration and then show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead. We show that a thousand graded examples are sufficient to outperform baseline methods and that training through the features of a model is necessary for good performance and tractable for large open-source models when using LoRA. We also investigate the mechanisms that enable reliable LLM uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators, applicable not just to their own uncertainties but also the uncertainty of other models. Lastly, we show that uncertainty estimates inform human use of LLMs in human-AI collaborative settings through a user study.


SocraticLM: Exploring Socratic Personalized Teaching with Large Language Models 1,2

Neural Information Processing Systems

Large language models (LLMs) are considered a crucial technology for advancing intelligent education since they exhibit the potential for an in-depth understanding of teaching scenarios and providing students with personalized guidance. Nonetheless, current LLM-based application in personalized teaching predominantly follows a "Question-Answering" paradigm, where students are passively provided with answers and explanations. In this paper, we propose SocraticLM, which achieves a Socratic "Thought-Provoking" teaching paradigm that fulfills the role of a real classroom teacher in actively engaging students in the thought process required for genuine problem-solving mastery. To build SocraticLM, we first propose a novel "Dean-Teacher-Student" multi-agent pipeline to construct a new dataset, SocraTeach, which contains 35K meticulously crafted Socratic-style multi-round (equivalent to 208K single-round) teaching dialogues grounded in fundamental mathematical problems. Our dataset simulates authentic teaching scenarios, interacting with six representative types of simulated students with different cognitive states, and strengthening four crucial teaching abilities. SocraticLM is then fine-tuned on SocraTeach with three strategies balancing its teaching and reasoning abilities. Moreover, we contribute a comprehensive evaluation system encompassing five pedagogical dimensions for assessing the teaching quality of LLMs. Extensive experiments verify that SocraticLM achieves significant improvements in the teaching performance, outperforming GPT4 by more than 12%.


Poor Alignment and Steerability of Large Language Models: Evidence from College Admission Essays

arXiv.org Artificial Intelligence

People are increasingly using technologies equipped with large language models (LLM) to write texts for formal communication, which raises two important questions at the intersection of technology and society: Who do LLMs write like (model alignment); and can LLMs be prompted to change who they write like (model steerability). We investigate these questions in the high-stakes context of undergraduate admissions at a selective university by comparing lexical and sentence variation between essays written by 30,000 applicants to two types of LLM-generated essays: one prompted with only the essay question used by the human applicants; and another with additional demographic information about each applicant. We consistently find that both types of LLM-generated essays are linguistically distinct from human-authored essays, regardless of the specific model and analytical approach. Further, prompting a specific sociodemographic identity is remarkably ineffective in aligning the model with the linguistic patterns observed in human writing from this identity group. This holds along the key dimensions of sex, race, first-generation status, and geographic location. The demographically prompted and unprompted synthetic texts were also more similar to each other than to the human text, meaning that prompting did not alleviate homogenization. These issues of model alignment and steerability in current LLMs raise concerns about the use of LLMs in high-stakes contexts.


Traveling abroad soon? Learn a language quickly with these 4 apps

FOX News

These apps let you choose from over a hundred different languages. Traveling to another country is an exciting experience, but learning a new language in order to do so can be a challenge. Fitting lessons into your schedule is difficult and getting the right pronunciation down is always a struggle. With language learning apps like Babbel, Rosetta Stone, Beelinguap and uTalk, you can learn a language at your own pace. These apps have hundreds of languages to choose from, and each app has a different approach and teaches a language differently.