Overview
Contents of Appendix A Extended Literature Review 14 B Time Uniform Lasso Analysis 15 C Results on Exploration 18 C.1 ALE 20 C.2 Proof of Results on Exploration 20 D Proof of Regret Bound
We present the bounds in terms of d and M for coherence with the rest of the text, assuming that M = O(p), which is the case when d p. Table 2 compares recent work on sparse linear bandits based on a number of important factors. The regret bounds in Table 2 are simplified to the terms with largest rate of growth, the reader should check the corresponding papers for rigorous results. Some of the mentioned bounds depend on problem-dependent parameters (e.g. To indicate such parameters we use in Table 2, following the notation of Hao et al. [2020]. Note that varies across the rows of the table, and is just an indicator for existence of other terms.
Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models
Transformer architecture has become the fundamental element of the widespread natural language processing (NLP) models. With the trends of large NLP models, the increasing memory and computation costs hinder their efficient deployment on resource-limited devices. Therefore, transformer quantization attracts wide research interest. Recent work recognizes that structured outliers are the critical bottleneck for quantization performance. However, their proposed methods increase the computation overhead and still leave the outliers there. To fundamentally address this problem, this paper delves into the inherent inducement and importance of the outliers. We discover that ฮณ in LayerNorm (LN) acts as a sinful amplifier for the outliers, and the importance of outliers varies greatly where some outliers provided by a few tokens cover a large area but can be clipped sharply without negative impacts. Motivated by these findings, we propose an outlier suppression framework including two components: Gamma Migration and Token-Wise Clipping.
An Overview of Low-Rank Structures in the Training and Adaptation of Large Models
Balzano, Laura, Ding, Tianjiao, Haeffele, Benjamin D., Kwon, Soo Min, Qu, Qing, Wang, Peng, Wang, Zhangyang, Yaras, Can
The rise of deep learning has revolutionized data processing and prediction in signal processing and machine learning, yet the substantial computational demands of training and deploying modern large-scale deep models present significant challenges, including high computational costs and energy consumption. Recent research has uncovered a widespread phenomenon in deep networks: the emergence of low-rank structures in weight matrices and learned representations during training. These implicit low-dimensional patterns provide valuable insights for improving the efficiency of training and fine-tuning large-scale models. Practical techniques inspired by this phenomenon--such as low-rank adaptation (LoRA) and training--enable significant reductions in computational cost while preserving model performance. In this paper, we present a comprehensive review of recent advances in exploiting low-rank structures for deep learning and shed light on their mathematical foundations. Mathematically, we present two complementary perspectives on understanding the low-rankness in deep networks: (i) the emergence of low-rank structures throughout the whole optimization dynamics of gradient and (ii) the implicit regularization effects that induce such low-rank structures at convergence. From a practical standpoint, studying the low-rank learning dynamics of gradient descent offers a mathematical foundation for understanding the effectiveness of LoRA in fine-tuning large-scale models and inspires parameter-efficient low-rank training strategies. Furthermore, the implicit low-rank regularization effect helps explain the success of various masked training approaches in deep neural networks, ranging from dropout to masked self-supervised learning. In summary, this tutorial provides researchers and practitioners with a deeper understanding of low-rank structures in the training and adaptation of large-scale deep learning models, highlighting both the theoretical foundations and practical applications of low-rank methods, and outlining promising directions for future research.
Membership Inference Attacks on Large-Scale Models: A Survey
The adoption of the Large Language Model (LLM) has accelerated dramatically since the ChatGPT from OpenAI went online in November 2022. Recent advances in Large Multimodal Models (LMMs), which process diverse data types and enable interaction through various channels, have expanded beyond the text-to-text limitations of early LLMs, attracting significant and concurrent attention from both researchers and industry. While LLMs and LMMs are starting to spread widely, concerns about their privacy risks are increasing as well. Membership Inference Attacks (MIAs), techniques used to determine whether a particular data point was part of a model's training set, serve as a key metric for assessing the privacy vulnerabilities of machine learning models. Hu et al. show that various machine learning algorithms are vulnerable to MIA. Despite extensive studies on MIAs in traditional models, there remains a lack of systematic surveys addressing their effectiveness and implications in modern large-scale models like LLMs and LMMs. In this paper, we systematically reviewed recent studies of MIA against LLMs and LMMs. We analyzed and categorized each attack based on their methodology and scenario and discussed the limitations in existing research. Additionally, we examine privacy concerns associated with the fine-tuning process. Finally, we provided some suggestions for future research in this direction.
Analyzable Chain-of-Musical-Thought Prompting for High-Fidelity Music Generation
Lam, Max W. Y., Xing, Yijin, You, Weiya, Wu, Jingcheng, Yin, Zongyu, Jiang, Fuqiang, Liu, Hangyu, Liu, Feng, Li, Xingda, Lu, Wei-Tsung, Chen, Hanyu, Feng, Tong, Zhao, Tianwei, Liu, Chien-Hung, Song, Xuchen, Li, Yang, Zhou, Yahui
Autoregressive (AR) models have demonstrated impressive capabilities in generating high-fidelity music. However, the conventional next-token prediction paradigm in AR models does not align with the human creative process in music composition, potentially compromising the musicality of generated samples. To overcome this limitation, we introduce MusiCoT, a novel chain-of-thought (CoT) prompting technique tailored for music generation. MusiCoT empowers the AR model to first outline an overall music structure before generating audio tokens, thereby enhancing the coherence and creativity of the resulting compositions. By leveraging the contrastive language-audio pretraining (CLAP) model, we establish a chain of "musical thoughts", making MusiCoT scalable and independent of human-labeled data, in contrast to conventional CoT methods. Moreover, MusiCoT allows for in-depth analysis of music structure, such as instrumental arrangements, and supports music referencing -- accepting variable-length audio inputs as optional style references. This innovative approach effectively addresses copying issues, positioning MusiCoT as a vital practical method for music prompting. Our experimental results indicate that MusiCoT consistently achieves superior performance across both objective and subjective metrics, producing music quality that rivals state-of-the-art generation models. Our samples are available at https://MusiCoT.github.io/.
FLEX: A Benchmark for Evaluating Robustness of Fairness in Large Language Models
Jung, Dahyun, Lee, Seungyoon, Moon, Hyeonseok, Park, Chanjun, Lim, Heuiseok
Recent advancements in Large Language Models (LLMs) have significantly enhanced interactions between users and models. These advancements concurrently underscore the need for rigorous safety evaluations due to the manifestation of social biases, which can lead to harmful societal impacts. Despite these concerns, existing benchmarks may overlook the intrinsic weaknesses of LLMs, which can generate biased responses even with simple adversarial instructions. To address this critical gap, we introduce a new benchmark, Fairness Benchmark in LLM under Extreme Scenarios (FLEX), designed to test whether LLMs can sustain fairness even when exposed to prompts constructed to induce bias. To thoroughly evaluate the robustness of LLMs, we integrate prompts that amplify potential biases into the fairness assessment. Comparative experiments between FLEX and existing benchmarks demonstrate that traditional evaluations may underestimate the inherent risks in models. This highlights the need for more stringent LLM evaluation benchmarks to guarantee safety and fairness.
GENIUS: A Generative Framework for Universal Multimodal Search
Kim, Sungyeon, Zhu, Xinliang, Lin, Xiaofan, Bastan, Muhammet, Gray, Douglas, Kwak, Suha
Generative retrieval is an emerging approach in information retrieval that generates identifiers (IDs) of target data based on a query, providing an efficient alternative to traditional embedding-based retrieval methods. However, existing models are task-specific and fall short of embedding-based retrieval in performance. This paper proposes GENIUS, a universal generative retrieval framework supporting diverse tasks across multiple modalities and domains. At its core, GENIUS introduces modality-decoupled semantic quantization, transforming multimodal data into discrete IDs encoding both modality and semantics. Moreover, to enhance generalization, we propose a query augmentation that interpolates between a query and its target, allowing GENIUS to adapt to varied query forms. Evaluated on the M-BEIR benchmark, it surpasses prior generative methods by a clear margin. Unlike embedding-based retrieval, GENIUS consistently maintains high retrieval speed across database size, with competitive performance across multiple benchmarks. With additional re-ranking, GENIUS often achieves results close to those of embedding-based methods while preserving efficiency.