Not enough data to create a plot.
Try a different view from the menu above.
Overview
HonestLLM: Toward an Honest and Helpful Large Language Model, Yue Huang
Large Language Models (LLMs) have achieved remarkable success across various industries due to their exceptional generative capabilities. However, for safe and effective real-world deployments, ensuring honesty and helpfulness is critical. This paper addresses the question: Can we prioritize the helpfulness of LLMs while preserving their honesty? To begin with, we establish exhaustive principles aimed at guaranteeing the honesty of LLM.
UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems Xialiang Tong
Single-stage neural combinatorial optimization solvers have achieved near-optimal results on various small-scale combinatorial optimization (CO) problems without requiring expert knowledge. However, these solvers exhibit significant performance degradation when applied to large-scale CO problems. Recently, two-stage neural methods motivated by divide-and-conquer strategies have shown efficiency in addressing large-scale CO problems. Nevertheless, the performance of these methods highly relies on problem-specific heuristics in either the dividing or the conquering procedure, which limits their applicability to general CO problems. Moreover, these methods employ separate training schemes and ignore the interdependencies between the dividing and conquering strategies, often leading to sub-optimal solutions. To tackle these drawbacks, this article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training method to eliminate the negative impact of a sub-optimal dividing policy. Employing a high-efficiency Graph Neural Network (GNN) for global instance dividing and a fixed-length sub-path solver for conquering divided sub-problems, the proposed UDC framework demonstrates extensive applicability, achieving superior performance in 10 representative large-scale CO problems.
Checklist
For all authors... (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? If you ran experiments... (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? This appendix is organized as follows. In Appendix A we provide a summary of the computational aspects of SPDEs used for data simulation and model definition, emphasizing the important role of the Fourier Transform (A.1) for simulating noise realizations of Wiener processes (A.2) and building numerical solvers for SPDEs (A.3).
Exploiting Representation Curvature for Boundary Detection in Time Series
Boundaries are the timestamps at which a class in a time series changes. Recently, representation-based boundary detection has gained popularity, but its emphasis on consecutive distance difference backfires, especially when the changes are gradual. In this paper, we propose a boundary detection method, RECURVE, based on a novel change metric, the curvature of a representation trajectory, to accommodate both gradual and abrupt changes. Here, a sequence of representations in the representation space is interpreted as a trajectory, and a curvature at each timestamp can be computed. Using the theory of random walk, we formally show that the mean curvature is lower near boundaries than at other points. Extensive experiments using diverse real-world time-series datasets confirm the superiority of RECURVE over state-of-the-art methods.
Building Socio-culturally Inclusive Stereotype Resources with Community Engagement
With rapid development and deployment of generative language models in global settings, there is an urgent need to also scale our measurements of harm, not just in the number and types of harms covered, but also how well they account for local cultural contexts, including marginalized identities and the social biases experienced by them. Current evaluation paradigms are limited in their abilities to address this, as they are not representative of diverse, locally situated but global, sociocultural perspectives. Our evaluation resources must be enhanced and calibrated by including people and experiences from different cultures and societies worldwide, to prevent gross underestimations or skewed measurements of harm. In this work, we demonstrate a socio-culturally aware expansion of evaluation resources in the Indian societal context, specifically for the harm of stereotyping. We devise a community engaged effort to build a resource that contains stereotypes for axes of disparity uniquely present in India. The resultant resource increases the number of stereotypes known for and in the Indian context by over 1000 stereotypes across many unique identities. We also demonstrate the utility and effectiveness of such expanded resources for evaluations of language models. CONTENT WARNING: This paper contains examples of stereotypes that may be offensive.
Overleaf Example
Recent advancements in image understanding have benefited from the extensive use of web image-text pairs. However, video understanding remains a challenge despite the availability of substantial web video-text data. This difficulty primarily arises from the inherent complexity of videos and the inefficient language supervision in recent web-collected video-text datasets. In this paper, we introduce Text-Only Pre-Alignment (TOPA), a novel approach to extend large language models (LLMs) for video understanding, without the need for pre-training on real video data. Specifically, we first employ an advanced LLM to automatically generate Textual Videos comprising continuous textual frames, along with corresponding annotations to simulate real video-text pairs.