Plotting

 Overview


Decision-Theoretic Planning: Structural Assumptions and Computational Leverage

Journal of Artificial Intelligence Research

Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDP-related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to describe performance criteria, in the functions used to describe state transitions and observations, and in the relationships among features used to describe states, actions, rewards, and observations. Specialized representations, and algorithms employing these representations, can achieve computational leverage by exploiting these various forms of structure. Certain AI techniques -- in particular those based on the use of structured, intensional representations -- can be viewed in this way. This paper surveys several types of representations for both classical and decision-theoretic planning problems, and planning algorithms that exploit these representations in a number of different ways to ease the computational burden of constructing policies or plans. It focuses primarily on abstraction, aggregation and decomposition techniques based on AI-style representations.


An Overview of Some Recent Developments in Bayesian Problem-Solving Techniques

AI Magazine

The last few years have seen a surge in interest in the use of techniques from Bayesian decision theory to address problems in AI. Decision theory provides a normative framework for representing and reasoning about decision problems under uncertainty. The articles cover the topics of inference in Bayesian networks, decision-theoretic planning, and qualitative decision theory. Here, I provide a brief introduction to Bayesian networks and then cover applications of Bayesian problem-solving techniques, knowledge-based model construction and structured representations, and the learning of graphic probability models.


An Overview of Some Recent Developments in Bayesian Problem-Solving Techniques

AI Magazine

The last few years have seen a surge in interest in the use of techniques from Bayesian decision theory to address problems in AI. Decision theory provides a normative framework for representing and reasoning about decision problems under uncertainty. Within the context of this framework, researchers in uncertainty in the AI community have been developing computational techniques for building rational agents and representations suited to engineering their knowledge bases. This special issue reviews recent research in Bayesian problem-solving techniques. The articles cover the topics of inference in Bayesian networks, decision-theoretic planning, and qualitative decision theory. Here, I provide a brief introduction to Bayesian networks and then cover applications of Bayesian problem-solving techniques, knowledge-based model construction and structured representations, and the learning of graphic probability models.


Inference in Bayesian Networks

AI Magazine

A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduces major current methods for exact computation, briefly surveys approximation methods, and closes with a brief discussion of open issues.


Background to Qualitative Decision Theory

AI Magazine

This article provides an overview of the field of qualitative decision theory: its motivating tasks and issues, its antecedents, and its prospects. Qualitative decision theory studies qualitative approaches to problems of decision making and their sound and effective reconciliation and integration with quantitative approaches. Although it inherits from a long tradition, the field offers a new focus on a number of important unanswered questions of common concern to AI, economics, law, psychology, and management.


Recent Advances in AI Planning

AI Magazine

The past five years have seen dramatic advances in planning algorithms, with an emphasis on propositional methods such as GRAPHPLAN and compilers that convert planning problems into propositional conjunctive normal form formulas for solution using systematic or stochastic SAT methods. Related work, in the context of spacecraft control, advances our understanding of interleaved planning and execution. In this survey, I explain the latest techniques and suggest areas for future research.


The Innovative Applications of Artificial Intelligence Conference

AI Magazine

The Innovative Applications of Artificial Intelligence Conference was held 28-30 July 1998 in Madison, Wisconsin. Bruce Buchanan was the program chair and Sam Uthrusamy was the program cochair.




Verification and Validation of Knowledge-Based Systems: Report on Two 1997 Events

AI Magazine

This article gives an overview of two recent events on the validation and verification of knowledge-based systems: (1) the 1997 European Symposium on the Verification and Validation of Knowledge-Based Systems (EUROVAV-97) and (2) the Four-teenth National Conference on Artificial Intelligence Workshop on the Verification and Validation of Knowledge- Based Systems. To give an integrated view of current research issues in this field, we organized this article along thematic lines, unifying the reports of the two separate meetings. Our report focuses on the trends that we think will be important in the near future in this field.