Plotting

 Overview


Case-Based Reasoning Integrations

AI Magazine

This article presents an overview and survey of current work in case-based reasoning (CBR) integrations. There has been a recent upsurge in the integration of CBR with other reasoning modalities and computing paradigms, especially rule-based reasoning (RBR) and constraint-satisfaction problem (CSP) solving. CBR integrations with modelbased reasoning (MBR), genetic algorithms, and information retrieval are also discussed. This article characterizes the types of multimodal reasoning integrations where CBR can play a role, identifies the types of roles that CBR components can fulfill, and provides examples of integrated CBR systems.



Case-Based Reasoning Integrations

AI Magazine

This article presents an overview and survey of current work in case-based reasoning (CBR) integrations. There has been a recent upsurge in the integration of CBR with other reasoning modalities and computing paradigms, especially rule-based reasoning (RBR) and constraint-satisfaction problem (CSP) solving. CBR integrations with modelbased reasoning (MBR), genetic algorithms, and information retrieval are also discussed. This article characterizes the types of multimodal reasoning integrations where CBR can play a role, identifies the types of roles that CBR components can fulfill, and provides examples of integrated CBR systems. Past progress, current trends, and issues for future research are discussed.


Occam's Razor

Neural Information Processing Systems

The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work. 1 Introduction Occam's Razor is a well known principle of "parsimony of explanations" which is influential in scientific thinking in general and in problems of statistical inference in particular. In this paper we review its consequences for Bayesian statistical models, where its behaviour can be easily demonstrated and quantified.


Occam's Razor

Neural Information Processing Systems

The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work. 1 Introduction Occam's Razor is a well known principle of "parsimony of explanations" which is influential in scientific thinking in general and in problems of statistical inference in particular. In this paper we review its consequences for Bayesian statistical models, where its behaviour can be easily demonstrated and quantified.


Occam's Razor

Neural Information Processing Systems

The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work. 1 Introduction Occam's Razor is a well known principle of "parsimony of explanations" which is influential inscientific thinking in general and in problems of statistical inference in particular. In this paper we review its consequences for Bayesian statistical models, where its behaviour can be easily demonstrated and quantified.




Pedagogical Agent Research at CARTE

AI Magazine

This article gives an overview of current research on animated pedagogical agents at the Center for Advanced Research in Technology for Education (CARTE) at the University of Southern California/Information Sciences Institute. Animated pedagogical agents, nicknamed guidebots, interact with learners to help keep learning activities on track. At CARTE, we have been developing guidebots that help learners acquire a variety of problem-solving skills in virtual worlds, in multimedia environments, and on the web. We are also developing technologies for creating interactive pedagogical dramas populated with guidebots and other autonomous animated characters.


Introduction to the Special Issue on Intelligent User Interfaces

AI Magazine

Recent years have witnessed significant progress in intelligent user interfaces. Emerging from the intersection of AI and human-computer interaction, research on intelligent user interfaces is experiencing a renaissance, both in the overall level of activity and in raw research achievements. Because intelligent user interfaces are designed to facilitate problem-solving activities where reasoning is shared between users and the machine, they are currently transitioning from the laboratory to applications in the workplace, home, and classroom.