Plotting

 Overview


Random Normed k-Means: A Paradigm-Shift in Clustering within Probabilistic Metric Spaces

arXiv.org Machine Learning

Existing approaches remain largely constrained by traditional distance metrics, limiting their effectiveness in handling random data. In this work, we introduce the first k-means variant in the literature that operates within a probabilistic metric space, replacing conventional distance measures with a well-defined distance distribution function. This pioneering approach enables more flexible and robust clustering in both deterministic and random datasets, establishing a new foundation for clustering in stochastic environments. By adopting a probabilistic perspective, our method not only introduces a fresh paradigm but also establishes a rigorous theoretical framework that is expected to serve as a key reference for future clustering research involving random data. Extensive experiments on diverse real and synthetic datasets assess our model's effectiveness using widely recognized evaluation metrics, including Silhouette, Davies-Bouldin, Calinski Harabasz, the adjusted Rand index, and distortion. Comparative analyses against established methods such as k-means++, fuzzy c-means, and kernel probabilistic k-means demonstrate the superior performance of our proposed random normed k-means (RNKM) algorithm. Notably, RNKM exhibits a remarkable ability to identify nonlinearly separable structures, making it highly effective in complex clustering scenarios. These findings position RNKM as a groundbreaking advancement in clustering research, offering a powerful alternative to traditional techniques while addressing a long-standing gap in the literature. By bridging probabilistic metrics with clustering, this study provides a foundational reference for future developments and opens new avenues for advanced data analysis in dynamic, data-driven applications.


Scaling Laws in Scientific Discovery with AI and Robot Scientists

arXiv.org Artificial Intelligence

Scientific discovery is poised for rapid advancement through advanced robotics and artificial intelligence. Current scientific practices face substantial limitations as manual experimentation remains time-consuming and resource-intensive, while multidisciplinary research demands knowledge integration beyond individual researchers' expertise boundaries. Here, we envision an autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle. This system could dynamically interact with both physical and virtual environments while facilitating the integration of knowledge across diverse scientific disciplines. By deploying these technologies throughout every research stage -- spanning literature review, hypothesis generation, experimentation, and manuscript writing -- and incorporating internal reflection alongside external feedback, this system aims to significantly reduce the time and resources needed for scientific discovery. Building on the evolution from virtual AI scientists to versatile generalist AI-based robot scientists, AGS promises groundbreaking potential. As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws, potentially shaped by the number and capabilities of these autonomous systems, offering novel perspectives on how knowledge is generated and evolves. The adaptability of embodied robots to extreme environments, paired with the flywheel effect of accumulating scientific knowledge, holds the promise of continually pushing beyond both physical and intellectual frontiers.


Agentic Large Language Models, a survey

arXiv.org Artificial Intelligence

There is great interest in agentic LLMs, large language models that act as agents. We review the growing body of work in this area and provide a research agenda. Agentic LLMs are LLMs that (1) reason, (2) act, and (3) interact. We organize the literature according to these three categories. The research in the first category focuses on reasoning, reflection, and retrieval, aiming to improve decision making; the second category focuses on action models, robots, and tools, aiming for agents that act as useful assistants; the third category focuses on multi-agent systems, aiming for collaborative task solving and simulating interaction to study emergent social behavior. We find that works mutually benefit from results in other categories: retrieval enables tool use, reflection improves multi-agent collaboration, and reasoning benefits all categories. We discuss applications of agentic LLMs and provide an agenda for further research. Important applications are in medical diagnosis, logistics and financial market analysis. Meanwhile, self-reflective agents playing roles and interacting with one another augment the process of scientific research itself. Further, agentic LLMs may provide a solution for the problem of LLMs running out of training data: inference-time behavior generates new training states, such that LLMs can keep learning without needing ever larger datasets. We note that there is risk associated with LLM assistants taking action in the real world, while agentic LLMs are also likely to benefit society.


STOOD-X methodology: using statistical nonparametric test for OOD Detection Large-Scale datasets enhanced with explainability

arXiv.org Machine Learning

Out-of-Distribution (OOD) detection is a critical task in machine learning, particularly in safety-sensitive applications where model failures can have serious consequences. However, current OOD detection methods often suffer from restrictive distributional assumptions, limited scalability, and a lack of interpretability. To address these challenges, we propose STOOD-X, a two-stage methodology that combines a Statistical nonparametric Test for OOD Detection with eXplainability enhancements. In the first stage, STOOD-X uses feature-space distances and a Wilcoxon-Mann-Whitney test to identify OOD samples without assuming a specific feature distribution. In the second stage, it generates user-friendly, concept-based visual explanations that reveal the features driving each decision, aligning with the BLUE XAI paradigm. Through extensive experiments on benchmark datasets and multiple architectures, STOOD-X achieves competitive performance against state-of-the-art post hoc OOD detectors, particularly in high-dimensional and complex settings. In addition, its explainability framework enables human oversight, bias detection, and model debugging, fostering trust and collaboration between humans and AI systems. The STOOD-X methodology therefore offers a robust, explainable, and scalable solution for real-world OOD detection tasks.


Towards Mobile Sensing with Event Cameras on High-agility Resource-constrained Devices: A Survey

arXiv.org Artificial Intelligence

With the increasing complexity of mobile device applications, these devices are evolving toward high agility. This shift imposes new demands on mobile sensing, particularly in terms of achieving high accuracy and low latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution, low latency, and energy efficiency, making it well-suited for high-accuracy and low-latency sensing tasks on high-agility platforms. However, the presence of substantial noisy events, the lack of inherent semantic information, and the large data volume pose significant challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature over the period 2014-2024, provides a comprehensive overview of event-based mobile sensing systems, covering fundamental principles, event abstraction methods, algorithmic advancements, hardware and software acceleration strategies. We also discuss key applications of event cameras in mobile sensing, including visual odometry, object tracking, optical flow estimation, and 3D reconstruction, while highlighting the challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving event camera hardware with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms to enhance perception. To support ongoing research, we provide an open-source \textit{Online Sheet} with curated resources and recent developments. We hope this survey serves as a valuable reference, facilitating the adoption of event-based vision across diverse applications.


Student-Powered Digital Scholarship CoLab Project in the HKUST Library: Develop a Chinese Named-Entity Recognition (NER) Tool within One Semester from the Ground Up

arXiv.org Artificial Intelligence

Starting in February 2024, the HKUST Library further extended the scope of AI literacy to AI utilization, which focuses on fostering student involvement in utilizing state-of-the-art technologies in the projects that initiated by the Library, named "Digital Scholarship (DS) CoLab". A key focus of the DS CoLab scheme has been on cultivating talents and enabling students to utilize advanced technologies in practical context. It aims to reinforce the library's role as a catalyst and hub for fostering multidisciplinary collaboration and cultivate the "can do spirit" among university members. The Library offers 1-2 projects per year for students to engage with advanced technologies in practical contexts while supporting the Library in tackling challenges and streamlining operational tasks. The tool that introduced in this paper was mainly developed by two of the authors, Sherry Yip Sau Lai and Berry Han Liuruo, as part-time student helpers under one of our DS CoLab scheme in the 2024 Spring Semester (February to May 2024). This paper details the complete journey from ideation to implementation of developing a Chinese Named-Entity Recognition (NER) Tool from the group up within one semester, from the initial research and planning stages to execution and come up a viable product. The collaborative spirit fostered by this project, with students playing a central role, exemplifies the power and potential of innovative educational models that prioritize hands-on learning with student involvement.


Synthetic Art Generation and DeepFake Detection A Study on Jamini Roy Inspired Dataset

arXiv.org Artificial Intelligence

--The intersection of generative AI and art is a fascinating area that brings both exciting opportunities and significant challenges, especially when it comes to identifying synthetic artworks. This study takes a unique approach by examining diffusion-based generative models in the context of Indian art, specifically focusing on the distinctive style of Jamini Roy. T o explore this, we fine-tuned Stable Diffusion 3 and used techniques like ControlNet and IPAdapter to generate realistic images. This allowed us to create a new dataset that includes both real and AI-generated artworks, which is essential for a detailed analysis of what these models can produce. We employed various qualitative and quantitative methods, such as Fourier domain assessments and autocorrelation metrics, to uncover subtle differences between synthetic images and authentic pieces. A key takeaway from recent research is that existing methods for detecting deep-fakes face considerable challenges, especially when the deepfakes are of high quality and tailored to specific cultural contexts. This highlights a critical gap in current detection technologies, particularly in light of the challenges identified above, where high-quality and culturally specific deepfakes are difficult to detect. This work not only sheds light on the increasing complexity of generative models but also sets a crucial foundation for future research aimed at effective detection of synthetic art. With the rapid advancement of artificial intelligence, the realm of art generation has undergone profound transformation, utilizing various methods to create incredibly realistic and complex digital artwork.


Aurelia: Test-time Reasoning Distillation in Audio-Visual LLMs

arXiv.org Artificial Intelligence

Recent advancements in reasoning optimization have greatly enhanced the performance of large language models (LLMs). However, existing work fails to address the complexities of audio-visual scenarios, underscoring the need for further research. In this paper, we introduce AURELIA, a novel actor-critic based audio-visual (AV) reasoning framework that distills structured, step-by-step reasoning into AVLLMs at test time, improving their ability to process complex multi-modal inputs without additional training or fine-tuning. To further advance AVLLM reasoning skills, we present AVReasonBench, a challenging benchmark comprising 4500 audio-visual questions, each paired with detailed step-by-step reasoning. Our benchmark spans six distinct tasks, including AV-GeoIQ, which evaluates AV reasoning combined with geographical and cultural knowledge. Evaluating 18 AVLLMs on AVReasonBench reveals significant limitations in their multi-modal reasoning capabilities. Using AURELIA, we achieve up to a 100% relative improvement, demonstrating its effectiveness. This performance gain highlights the potential of reasoning-enhanced data generation for advancing AVLLMs in real-world applications. Our code and data will be publicly released at: https: //github.com/schowdhury671/aurelia.


Extracting Patient History from Clinical Text: A Comparative Study of Clinical Large Language Models

arXiv.org Artificial Intelligence

Extracting medical history entities (MHEs) related to a patient's chief complaint (CC), history of present illness (HPI), and past, family, and social history (PFSH) helps structure free-text clinical notes into standardized EHRs, streamlining downstream tasks like continuity of care, medical coding, and quality metrics. Fine-tuned clinical large language models (cLLMs) can assist in this process while ensuring the protection of sensitive data via on-premises deployment. This study evaluates the performance of cLLMs in recognizing CC/HPI/PFSH-related MHEs and examines how note characteristics impact model accuracy. We annotated 1,449 MHEs across 61 outpatient-related clinical notes from the MTSamples repository. To recognize these entities, we fine-tuned seven state-of-the-art cLLMs. Additionally, we assessed the models' performance when enhanced by integrating, problems, tests, treatments, and other basic medical entities (BMEs). We compared the performance of these models against GPT-4o in a zero-shot setting. To further understand the textual characteristics affecting model accuracy, we conducted an error analysis focused on note length, entity length, and segmentation. The cLLMs showed potential in reducing the time required for extracting MHEs by over 20%. However, detecting many types of MHEs remained challenging due to their polysemous nature and the frequent involvement of non-medical vocabulary. Fine-tuned GatorTron and GatorTronS, two of the most extensively trained cLLMs, demonstrated the highest performance. Integrating pre-identified BME information improved model performance for certain entities. Regarding the impact of textual characteristics on model performance, we found that longer entities were harder to identify, note length did not correlate with a higher error rate, and well-organized segments with headings are beneficial for the extraction.


TRACE: Intra-visit Clinical Event Nowcasting via Effective Patient Trajectory Encoding

arXiv.org Artificial Intelligence

Electronic Health Records (EHR) have become a valuable resource for a wide range of predictive tasks in healthcare. However, existing approaches have largely focused on inter-visit event predictions, overlooking the importance of intra-visit nowcasting, which provides prompt clinical insights during an ongoing patient visit. To address this gap, we introduce the task of laboratory measurement prediction within a hospital visit. We study the laboratory data that, however, remained underexplored in previous work. We propose TRACE, a Transformer-based model designed for clinical event nowcasting by encoding patient trajectories. TRACE effectively handles long sequences and captures temporal dependencies through a novel timestamp embedding that integrates decay properties and periodic patterns of data. Additionally, we introduce a smoothed mask for denoising, improving the robustness of the model. Experiments on two large-scale electronic health record datasets demonstrate that the proposed model significantly outperforms previous methods, highlighting its potential for improving patient care through more accurate laboratory measurement nowcasting. The code is available at https://github.com/Amehi/TRACE.